В настоящее время существует множество оптических разъемов, отличающихся размерами и формами, методами крепления и фиксации. Выбор типа оптического коннектора зависит от используемого активного оборудования, задач монтажа волс и требуемой точности. Основными являются - LC, SC, FC, ST.

Использование оптического разъема LC позволяет добиться высокой плотности монтажа в коммутационной панели или шкафу.

Диаметр наконечника разъема 1,25 мм, материал - керамика. Фиксация разъема происходит за счет прижимного механизма - защелки, аналогично разъему типа RJ-45, которая исключает непредвиденное разъединение.

При использовании дуплексных патч-кордов возможно соединение коннекторов клипсой. Используется для многомодовых и одномодовых волокон.


Тип разъема SC используется как для многомодового волокна, так и одномодового. Диаметр наконечника 2,5 мм, материал - керамика. Корпус коннектора выполнен из пластика. Фиксация коннектора осуществляется поступательным движением с защелкиванием.

Разъемы FC, как правило, используются в одномодовых соединених. Корпус разъема выполнен из никелированной латуни. Резьбовая фиксация позволяет обеспечить надежную защиту от случайных разъединения.

В настоящее время ST коннектор широко не применяется из-за недостатков и возросших потребностей по плотности монтажа. Фиксация коннектора происходит за счет поворота вокруг оси, подобно BNC разъему.

Основные данные по ВОЛС для проектирования систем телекоммуникаций

Оптическое волокно позволяет организовывать связь без регенераторов (повторителей сигнала) до 120 км у одномодовых и до 5 км у многомодовых кабелей.

В качестве сигналов в оптических кабелях используются не электрические импульсы, а моды (световые потоки). Стенки центральной жилы - диэлектрики и имеют отражающие свойства стекла, благодаря которым световые потоки распространяются внутри кабеля.

Одномодовые и многомодовые волокна

Принято разделять оптоволоконные волокна (кабеля и пачкорды) на два типа:

Одномодовые (Single Mode), сокращённо: SM;

Многомодовые (Multi Mode), сокращённо: MM.

При этом оба типа имеют свои преимущества и недостатки, а значит каждый из них может быть использован для реализации различных целей.

Одномодовые оптические волокна (SM)

8/125, 9/125, 10/125 - это маркировка одномодовых оптоволоконных пачкордов. Первая цифра в маркировке - диаметр центральной жилы, а вторая - это диаметр оболочки. Стоит отметить, что диметры ВОЛС (волоконно-оптической линии передач) измеряются в мкм (микрометрах).

В одномодовом кабеле используют сфокусированный узконаправленный лазерный луч с диапазоном световых волн 1,310-1,550 мкм (1310-1550 нм).

Благодаря тому, что диаметр центральной жилы достаточно мал, световые моды двигаются в ней практически параллельно центральной оси. Поэтому в волокне практически отсутствуют искажения сигнала, а малое затухание позволяет передавать оптический импульс на расстояния до 120 км без регенерации на скоростях до 100 Гбит/с и выше.

Различают одномодовые оптические волокна:

С несмещённой дисперсией (стандартное, SMF);

Со смещённой дисперсией (DSF);

И с ненулевой смещённое дисперсией (NZDSF).

Многомодовые оптические волокна (MM)

Многомодовое волокно со ступенчатым коэффициентом


Многомодовое волокно с градиентным коэффициентом

Многомодовые волокна имеют маркировку, например, 50/125 или 62,5/125. Это говорит о том, что диаметр центральной жилы может быть 50 или 62,5 мкм, а диметр оболочки такой же, как и у одномодового типа - 125 мкм.

В многомодовом кабеле используют рассеянные лучи от светодиодов или лазера с диапазоном световых волн 0,85 мкм - 1,310 мкм (850-1310 нм).

Из-за того, что диаметр центральной жилы многомодового патч-корда больше, чем у одномодового, количество путей для распространения световых модов увеличивается. Сразу несколько световых потоков двигаются по различным траекториям, отражаясь от зеркальной поверхности центральной жилы.

Однако, многомодовые волокна со ступенчатым коэффициентом преломления имеет достаточно высокую межмодовую дисперсию (постепенное расширение оптического луча в результате отражений), что ограничивает расстояние передачи сигнала до 1 км и скорость передачи до 100 - 155 Мбит/с. Рабочая длина волны, как правило, 850 нм.

Многомодовые волокна с градиентным коэффициентом преломления характеризуются меньшей межмодовой дисперсией вследствие плавного изменения показателя преломления в волокне. Это позволяет передавать оптический сигнал на расстояния до 5 км со скоростью до 155 Мбит/с. Рабочая длина волны - 850 нм и 1310 нм.

Отличия одномодовых и многомодовых оптических волокон

В одномодовом и многомодовом оптоволокне достаточно важную роль играет затухание сигналов. Этим и обусловлено малое рабочее расстояние многомодовых волокон (1-5 км). Несмотря на то, что казалось бы, по многомодовому кабелю движется больше световых потоков, пропускная способность таких кабелей и патч-кордов ниже, чем у одномодовых.

Узконаправленный (одномодовый) луч в одномодовых волокнах затухает в несколько раз меньше, чем рассеянный (многомодовый) в многомодовых волокнах, что позволяет увеличивать расстояние (до 120 км) и скорость передаваемого сигнала.

Оптические коннекторы

Оптический разъем, или коннектор (Optical Connector) - это недорогой и эффективный способ коммутации оптоволоконных кабелей. Он обеспечивает надежное соединение и целостность передаваемых пакетов.

Сегодня на рынке присутствует большое количество различных типов коннекторов для ВОЛС. Все они имеют различные параметры и назначение. Стыковку двух одинаковых либо разных коннекторов производят при помощи оптического адаптера.

Различные типы оптических коннекторов имеют разную форму и технологию соединения. Также при производстве таких разъемов могут быть использованы различные материалы, будь то металлы или полимеры.

Основные типы оптических коннекторов (разъёмов)

Коннекторы SC

SC-наиболее популярные оптические разъёмы.

Корпус разъёма SC выполнен из пластика, в поперечном сечении - прямоугольный. Подключение и отключение данного коннектора производятся линейно, в отличие от коннекторов FC и SC, в которых подключение вращательное. Благодаря этому, а также специальной «защёлке», обеспечивается достаточно жёсткая фиксация в оптической розетке. Разъёмы SC используются, в основном, на стационарных объектах. По цене несколько дороже разъёмов FC и SC.

Синим цветом маркируются одномодовые SC-разъёмы, серым цветом - многомодовые разъёмы, зелёным цветом - одномодовые разъёмы с классом полировки APC (со скошенным торцом).

Коннекторы LC


Оптический разъём LC внешне похож на разъём SC, но меньше него по размерам, благодаря чему при помощи LC-разъёмов легко реализуются кроссовые оптические соединения высокой плотности. Фиксация в оптической розетке осуществляется при помощи защелки.

Коннекторы FC

Разъёмы FC выполнены из керамической сердцевины и металлического наконечника. Фиксация в оптической розетке происходит за счёт резьбового соединения. Разъёмы FC обеспечивают низкий уровень потерь и минимум обратных отражений, а благодаря надёжной фиксации используются для организации связи на подвижных объектах, сетях связи железных дорог и других ответственных применениях.

Коннекторы ST

Разъёмы ST характеризуются простотой и надежностью в эксплуатации, легкостью установки и относительно невысокой ценой. Внешне похожи на разъёмы FC, но, в отличие от FC, в которых фиксация в розетке осуществляется при помощи резьбового соединения, разъёмы ST относятся к разряду BNC-коннекторов (соединение осуществляется при помощи разъёма байонет). ST-разъёмы чувствительны к вибрации и применяются с этими ограничениями.

Разъёмы ST используются, в основном, для подключения оптического оборудования к магистральным линиям и в локальных вычислительных сетях.

Коннекторы DIN

Разъём DIN похож на разъём FC, но имеет меньшие размеры. Керамический сердечник диаметром 2,5 мм, выступает за пределы пластикового корпуса, который, в свою очередь, имеет фиксатор, препятствующий вращению сердечника вокруг своей. Разъёмы DIN часто используются в измерительном оборудовании.

Коннекторы Е-2000

Е-2000 - один из наиболее сложных оптических разъёмов. Подключение и отключение осуществляется линейно (push-pull), а открытие - посредством специальной вставки-ключа. Поэтому, ошибочно вынуть такой коннектор практически не представляется возможным.

Разъёмы E-2000 имеют в своей конструкции специальные заглушки, которые автоматически закрывают торец разъёма при его отключении от оптической розетки, благодаря чему исключается попадание пыли внутрь.

Разъёмы Е-2000 отличает высокая надежность и плотность монтажа. Квадратное сечение разъёма обеспечивает лёгкую реализацию дуплексных соединений.

Разъемы с увеличенной плотностью монтажа

Коннекторы MT-RJ

Разъёмы MT-RJ изготавливаются в виде дуплексных пар.

Коннекторы VF-45 (SJ)

Хвостовик разъёма наклонён примерно под углом от плоскости соединения волокон. Разъём VF-45 (SJ) оборудован самозащёлкивающейся противопылевой шторкой.

Коннекторы MU

Аналог разъёма SC, меньший по размерам. Центратор - керамический, диаметром 1,25 мм, остальные части пластиковые.

Цвета оптических коннекторов (разъёмов).

FC и ST - никелированная латунь

SC и LC дуплексный или симплексный многомодовый - бежевый или серый

SC и LC дуплексный или симплексный одномодовый - синий

SC/APC симплексный (simplex) - зеленый

Классы полировки оптических коннекторов

Пожалуй, главными характеристиками оптических разъемов являются вносимое затухание и обратное отражение. Оптическое затухание оказывает более сильное влияние на качество сигнала, чем обратное отражение.

Показатель обратного затухания зависит, прежде всего, от поперечного отклонения сердцевин соединяемых оптических волокон.

Полировка оптических разъёмов обеспечивает плотность соединения оптических волокон друг с другом и уменьшает воздушный зазор, что, в свою очередь, уменьшает обратное отражение сигнала.

Существует 4 класса полировки: PC, SPC, UPC и APC.

Полировка PC, SPC, UPC:


РС (Physically Contact)

К классу PC относятся коннекторы ручной полировки, а также разъёмы, изготовляемые по клеевой технологии. Скорость применения - до 1 Гбит/с.

SРС (Super Physically Contact)

Механическая полировка торцов оптических коннекторов. Обеспечивает более плотное прилегание и использование в системах со скоростями более 1,25 Гбит/с.

UPC (Ultra Physically Contact)

Автоматическая полировка. Плоскости соединяемых коннекторов прилегают ещё более плотно, чем в PC и SPC, поэтому такие коннекторы используются в системах передачи информации со скоростями 2,5 Гбит/с и выше.

Полировка APC (Angled Physically Contact):

Контактная поверхность данных разъёмов скошена на 8 - 12 градусов от перпендикуляра. Такой способ шлифовки применяется для снижения уровня энергии отраженного сигнала (не менее 60 дБ). Коннекторы АРС используются только совместно с другими коннекторами APC и не могут применяться в соединении с другими видами коннекторов (PC, SPC, UPC). Отличаются зеленой маркировкой пластиковых наконечников.

Виды оптических патчкордов

Симплексные (SX) и дуплексные (DX) патчкорды

Оптические патчкорды могут быть симплексными (на одно соединение) и дуплексными (на два соединения).



Патчкорд SC-SC simplex (SX)
Патчкорд SC-SC duplex (DX)

Переходные патчкорды

Для перехода с одного типа оптического коннектора на другой служат переходные оптические патчкорды. Необходимость их применения возникает достаточно часто, при коммутации оборудования различного назначения и производства. Для этого переходные патчкорды оконцовываются разными оптическими коннекторами: например, с одного конца - LC, с другого конца - FC.

Переходные патчкорды бывают симплексными и дуплексными.

Цвета патчкордов

Оболочка оптических патчкордов отличается, взависимости от типа оптического волокна, и имеет цвет:

  • жёлтый - для одномодового волокна;
  • оранжевый - для многомодового волокна с диаметром 50 мкм;
  • синий, чёрный - для многомодового волокна с диаметром 62,5 мкм.

Отличия от общепринятой цветовой маркировки могут быть при изготовлении дуплексных патчкордов.

Маркировка оптических патчкордов

Обычно, в маркировке оптических патчкордов указывается:

  • тип коннекторов: обычно SC, FC, LC, ST, MTRJ;
  • тип волокна: одномодовое (SM) или многомодовое (MM)
  • класс полировки: PC, SPC, UPC или APC;
  • количество волокон: одном (simplex, SX) или два (duplex, DX);
  • диаметр светопроводящей сердцевины и буфера: обычно 9/125 у одномодовых патчкордов и 50/125 или 62,5/125 у многомодовых патчкордов;
  • длина патчкорда.

Краткий обзор элементной базы

Соединители - необходимая часть любой волоконно-оптической системы передачи информации (ВОСП). Без них уже невозможно представить себе современную связь. И, естественно, в СКС соединители тоже занимают заметное место. О них спорят, их стандартизируют, но главное - никто уже не сомневается, что без них СКС не смогут нормально развиваться.

Соединитель в волоконной оптике - это комплект коннекторов , установленных на волоконно-оптический кабель и состыкованных в розетке .

Сегодня установка коннектора на кабель даже в полевых условиях, в зависимости от конструкции, занимает от 2 до 10 минут, и это - длительность технологического цикла; а трудоемкость оконцовки еще ниже.

А ведь, кажется, совсем недавно, лет десять назад, эта сложнейшая операция требовала применения станков, микроскопов, телекамер и мониторов, специальной оснастки. За день удавалось оконцевать не больше 6-8 шнуров. Сейчас оператор в стационарных условиях может оконцевать до 50 и более шнуров в смену.

Какими средствами удается достигать таких результатов?

Эта статья - о том, какие коннекторы применялись вчера, применяются сегодня и будут применяться завтра, о технологиях оконцовки.

Обычно основа коннектора - прецизионный наконечник, в который вклеивается оптическое волокно. Отверстие под волокно - 125 микрон; суммарный допуск на диаметры наконечника и отверстия, на их соосность - единицы микрон, даже если используется многомодовое волокно с диаметром световедущей жилы 62.5 мкм. А работать всё чаще приходится с одномодовым - 9.5/125 мкм. В начале 80-х существовало две технологии оконцовки кабеля: на станке и под микроскопом. Соответственно и коннекторы выпускались двух типов: с припуском на обработку или с юстируемой внешней втулкой.

Появившиеся позже волокна с хорошей геометрией и керамические прецизионные наконечники позволили полностью отказаться от юстировки серийной продукции, хотя до сих пор в некоторых типах коннекторов существует возможность выставлять эксцентриситет волокна относительно ключа коннектора, тем самым значительно (максимум - вдвое) снижая радиальное рассогласование волокон в розетке соединителя.

Уход от юстировки дал возможность вести оконцовку в условиях объекта. Появились комплекты инструментов и приспособлений, размещенные в удобных кейсах; были разработаны модификации коннекторов, исключающие операции полировки торца и даже вклейку волокна в условиях объекта. Работа свелась к разделке кабеля и механической фиксации на нем коннекторов, но платить за это пришлось снижением качества и надежности либо существенным увеличением стоимости.

И, как логическое продолжение развития, все чаще применяется наиболее прогрессивный способ монтажа сетей - из заранее оконцованных кабелей заказной длины, в том числе многожильных, бронированных, длиной до двух километров. Коннекторы таких многожильных шнуров защищены при транспортировке и прокладке отрезком гибкого металлопластикового рукава, снабженного рым-болтом для удобства прокладки. Это новшество позволило вести установку коннекторов на мерные отрезки кабеля в условиях специализированного производства, тестировать и паспортизовать его в стационарных условиях на высокоточной измерительной аппаратуре, а главное - пользоваться простыми и надежными коннекторами. Монтаж на объекте - в его традиционном понимании - при использовании такого "оптического конструктора" отсутствует; работы сводятся к прокладке и подключению готовых оконцованных кабелей.

Итак, что представляет собой современный соединитель?

Коннектор ST был разработан компанией AT&T (из нее позднее выделилась Lucent Technologies) в середине 80-х годов и в настоящее время получил наибольшее распространение в оптических подсистемах локальных сетей. Основой конструкции коннектора является керамический наконечник (ferrule) диаметром 2,5 мм с выпуклой (R~20 мм) торцевой поверхностью, которая обеспечивает физический контакт состыкованных световодов. Для защиты торца волокна от повреждений при прокручивании в момент установки применяется боковой ключ, входящий в паз розетки, вилка на розетке фиксируется подпружиненным байонетным замком.

Коннектор прост и надежен в эксплуатации, легко устанавливается, относительно дешев. Однако предельная простота конструкции имеет и отрицательные стороны: коннектор чувствителен к рывкам за кабель, значительным вибро - и ударным нагрузкам, поскольку наконечник представляет единый узел с корпусом и хвостовиком. Этот недостаток не позволяет применять ST-коннекторы на подвижных объектах. При попытках использовать такие стационарные соединители в качестве бортовых могут происходить сбои в работе аппаратуры.

Удачная конструкция коннектора ST вызывала появление на рынке большого числа ST-совместимых аналогов. Их конструктивные отличия от прототипа определяются в основном формой и материалом гайки (байонетного фиксатора), а также принципом крепления корпуса коннектора к буферным оболочкам и защитным покрытиям оптического кабеля и световода. Детали коннектора обычно выполняются из цинкового сплава с никелированием, реже - из пластмассы. Вариант с одинарным обжимом (фирмы Lucent Technologies, AMP) основан на хвостовике цилиндрической формы и обжимной гильзе. При сборке коннектора кевларовые нити упрочняющей оплетки укладываются на поверхность задней части корпуса, после чего на него надвигается и обжимается металлическая гильза. В такой конструкции при воздействии вырывающего усилия сразу же начинают работать нити упрочняющей оплетки, что резко снижает вероятность обрыва кабеля.

Для дополнительного увеличения механической прочности соединительных шнуров в коннекторах ряда фирм предусматривается обжим на задней части корпуса не только кевларовых нитей, но и внешней оболочки миникабеля.

Коннектор разрешен к применению стандартами СКС.

Розетки SТ снабжены разрезным керамическим (SM) или бронзовым (ММ) центратором. Крепление на панели - гайкой за корпусную резьбу.

Реже встречаются специальные фланцевые SТ-розетки ряда западных фирм.

Были разработаны японской телекоммуникационной корпорацией NTT и ориентированы, в основном, на применение в одномодовых линиях дальней связи и специализированных системах, а также в сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой (R~20 мм) торцевой поверхностью, обеспечивает физический контакт стыкуемых световодов. Его изготавливают с жесткими допусками на геометрические параметры. Все это позволяет получить низкий уровень потерь и минимум обратных отражений. Радиус наконечника обеспечивает физический контакт стыкуемых световодов. Этот контакт, исключающий воздушный зазор, применяется для уменьшения обратного отражения, например, в системах кабельного телевидения. (Иногда это подчеркивают тем, что в названии коннектора указывают аббревиатуру PC - physical contact, SPC - super physical contact, UPC - ultra physical contact; отличие здесь в качестве полировки торца, что ведет к снижению уровня отраженного сигнала; максимальное снижение удается получить шлифовкой и полировкой торца под углом 8?; при этом практически весь отраженный сигнал выходит из световедущей жилы в отражающую оболочку и затем поглощается полимерным покрытием волокна. Такие коннекторы обозначаются аббревиатурой APC - angle physical contact, и отличаются обязательным зеленым цветом хвостовиков, поскольку несовместимы с обычными коннекторами).

Для фиксации на розетке коннектор снабжен накидной гайкой с резьбой М8 х 0.75. В отличие от коннектора ST, в данной конструкции предусмотрена развязка подпружиненного наконечника относительно корпуса, что усложняет и удорожает коннектор; однако такое дополнение полностью окупается повышением надежности. Соединители FC лучше выдерживают вибрацию и удары, и потому они наиболее предпочтительны для бортовых сетей.

Многокомпонентная конструкция коннектора FC допускает азимутальное вращение наконечника в процессе оконцовки, что позволяет достигать потерь менее 0.2 дБ и работать со специализированными волокнами.

Моноблочный FC коннектор "ПТ Плюс" аналогичен большинству зарубежных FC/PC коннекторов. Все они имеют упрощенную технологию сборки, что позволяет ускорить процесс оконцовки оптического кабеля.

Основным недостатком FC и ST-коннектора считается необходимость вращательного движения при подключении к розетке соединителя. Для преодоления этого недостатка, препятствующего более плотному монтажу на лицевой панели, разработан коннектор типа SC. Конструктивно он представляет из себя прямоугольный в сечении пластмассовый корпус. Коннектор имеет механическую развязку наконечника, фиксирующего элемента и кабеля.

Подключение и отключение коннектора SC производится линейно (push-pull), Это предохраняет наконечники соединителей от прокручивания друг относительно друга в момент фиксации в розетке. Фиксирующий механизм открывается только при вытягивании коннектора за корпус. К недостаткам коннекторов SC следует отнести несколько более высокую по сравнению с изделиями серии ST цену и существенно меньшую механическую прочность. Например, усилие вырыва коннектора из розетки регламентируется в пределах 40 Н, в то время как для серии FC это значение практически может равняться прочности миникабеля. Все это не сказывается при стационарном использовании коннекторов; однако использовать их, как бортовые, нецелесообразно. Несмотря на меньшую механическую прочность, коннектор нашел широкое применение в одномодовых и многомодовых сетях и был принят, как основной, во многих странах Европы. Он также разрешен к применению стандартами СКС.

Его применение несколько ограничивается тем, что часть активного оптического оборудования, разработанного ранее 1995 года, не выпускается в вариантах с SC-розетками.

Кроме SC и ST, допускается применение других коннекторов в том случае, если система полностью поставляется одним предприятием, которое дает гарантию на СКС в целом.

В системах FDDI, отвечающих стандарту LCF, а также в некоторых типах оборудования с портами Fast Ethernet и Gigabit Ethernet, используются дуплексные коннекторы типа SC. Они отличаются наличием на корпусе фиксаторов, позволяющих соединить два коннектора вместе для получения дуплексной вилки.

Для получения такой вилки из коннекторов SC, не имеющих фиксаторов, может быть использован специальный пластмассовый зажим, который состоит из двух симметричных половин, содержащих гнезда для укладки двух коннекторов и защелку для фиксации.

Пластмассовый корпус позволяет применить цветовую кодировку различных типов коннекторов SC, что облегчает их идентификацию. Одномодовые варианты имеют, обычно голубой, бежевый, а многомодовые - черный, серый цвет. Выпускается также коннектор SC со скошенной (АРС) торцевой частью наконечника. Коннекторы этого типа обязательно имеют корпус зеленого цвета.

На изменение окраски могут влиять и требования покупателей. Например, достаточно часты просьбы о применении для всех типов одномодовых соединителей более контрастного, чем бежевый, синего цвета.

Все коннекторы от "Перспективных Технологий Плюс", выпускающиеся по ТУ 25904174.01-99, имеют сертификат Минсвязи России (ССЭ) и гарантийный срок эксплуатации 18 месяцев.

Технические характеристики соединителей по ТУ 25904174.01-99:
диаметр наконечника: 2.5 ± 0.0005 мм
несоосность отверстия:
для SM менее 0.0007 мм
для MM менее 0.002 мм
угол торца наконечника АРС: 8° ±0.2°

Рабочие условия эксплуатации:
температура: -60…..+85 °С
пониженное атмосферное давление:
рабочее 60 кПа (450 мм рт.ст.)
предельное 12 кПа (90 мм рт.ст.)
влажность: до 100% при +25 °С

Соединительная розетка ST обеспечивает физический контакт соединяемых ST коннекторов. Многомодовая розетка ST содержит бронзовый разрезной центратор, одномодовая розетка ST - керамический центратор. Установка на панель - в D-образном отверстии с помощью гайки. Гораздо реже встречаются розетки с развитым фланцем, с креплением на два винта.

Соединительные розетки FC выпускаются с квадратным фланцем (тип NTT) и с гайкой (D-тип) для компактного монтажа.

D-тип может устанавливаться на панель с гнездами под ST-розетку. Разрезной плавающий центратор в одномодовых розетках - керамический, в многомодовых - бронзовый.

Соединительная розетка SC имеет полимерный корпус. В одномодовых SC и дуплексных SC розетках плавающие центраторы обычно являются керамическими, в многомодовых SC и дуплексных SC - бронзовыми. Крепление на панели осуществляется металлическим фиксатором - защелкой, реже - винтами через отверстия фланца.

Полимерные или резьбовые металлические заглушки защищают розетки от попадания пыли.

Используются для соединения шнуров различных стандартов, для сопряжения аппаратуры различных производителей с ранее проложенными сетями, если их стандарты не совпадают.

Выпускаются переходные розетки всех наиболее часто используемых стандартов: FC-SТ, FC-SC, SC-ST, SC-D-ST. Присоединительные размеры могут соответствовать любой из розеток, однако поддержание большой номенклатуры достаточно дорого; поэтому, например, все переходные розетки от "ПТ Плюс" имеют фланец, соответствующий розетке SC.

Стандартные технические характеристики розеток:
вносимые потери на соединение стандартных шнуров:
для одномодовых (SM) 0.2 дБ - типично, 0.3 дБ - максимально
для многомодовых (ММ) 0.05дБ - типично, 0.2 дБ - максимально
Цвет пластмассовых полукорпусов:
SM: бежевый, синий, зеленый (АРС);
MM: черный
Рабочие температуры: -60…..+85 °С

Кроме коннекторов, выпускаемых российскими компаниями "ПТ" и "ПТ Плюс" (массово), "Оптел" (серийно) и "Техномаш" (мелкосерийно), на отечественном рынке присутствуют изделия от АМР, Мolex, FACI, Amfenol, Lucent Technology (Avaya); появляются, обычно в составе импортной аппаратуры, изделия других фирм. Многие отечественные предприятия занимаются сейчас сборкой шнуров с применением таких комплектующих.

Как правило, эти коннекторы и розетки выполнены из никелированных цинковых сплавов (литьем или методом порошковой металлургии) или из пластмасс.

Пластмассовые изделия не обладают высокой жесткостью и твердостью, свойственной металлам, но такие соединители (после включения желательно их не трогать) имеют право на существование, например, в офисах. Расчет прост: раз в два-три года меняется поколение компьютеров, причем редкая сеть может избежать модернизации после смены 2-3 поколений, значит, время жизни офисной сети без глубокой модернизации не может превышать 5-7 лет. Такое время в офисе прослужат и пластмассовые разъемы. Наверное, лучшими из простых пластмассовых коннекторов являются коннекторы типа SC, жесткая конструкция которых (с развязанным наконечником) неплохо ведет себя при переменных нагрузках на хвостовик, а худшими - коннекторы типа ST в комплекте с пластмассовыми розетками.

Конечно, за рубежом выпускаются также и изделия безукоризненного качества, например, измерительные шнуры от американской фирмы "Rifox" или швейцарского "Diamond", где детали для коннекторов изготавливают из латуни или сплавов типа мельхиора, но их стоимость несопоставима с ценой той продукции, которая продвигается на наши рынки.

Кроме трех основных типов одноканальных коннекторов, (занимающих, например, более 73% рынка США), на нашем рынке присутствуют и другие коннекторы, например, SMA, DIN, D4, Е-2000 (и начинают появляться SFF-типы, о которых следует рассказать отдельно).

Соединитель типа SMA морально устарел еще в начале 90-х годов. В этой конструкции, применявшейся одно время в странах НАТО (как оптический аналог электроразъема SMA), нет разрезного плавающего центратора; "нестандартные" наконечники диаметром 3.75 мм стыкуются в жесткой соединительной розетке без ключа, что ведет к высоким потерям и повреждениям торца волокна. Соединительная резьба - 3/8 дюйма, что тоже не способствовало популярности изделия.

Когда в начале 90-х годов "Перспективные Технологии" выпускали детали SMA-совместимого соединителя на своем производстве, пришлось существенно ужесточить допуски на размеры по сравнению с принятыми, например, в Англии. Ведь даже расчеты показывали невозможность получения хороших параметров на случайном сочетании розеток и коннекторов. С тех пор многое изменилось лучшему в качестве, но, тем не менее, на Западе тип SMA сейчас используется только для поддержания старой аппаратуры, а также в медицинских и других прикладных применениях волоконной оптики. В современных системах связи его нет. И если он все же порой появляется в изделиях, получаемых российскими предприятиями с Запада (даже в 2000 году), Вы можете сами сделать вывод о добросовестности поставщиков и компетентности покупателей.

Соединитель типа DIN имеет небольшие габариты (например, соединительная резьба - М5.5х0.5, диаметр гайки - 7 мм) и далеко выступающий керамический наконечник диаметром 2.5 мм, ключ от поворота. Достаточно широко применялся в Германии, поступает в Россию в составе аппаратуры. В Европе выпускается транснациональным концерном "Diamond", чьи предприятия расположены от Норвегии до Италии, а новые филиалы открыты в Венгрии и Чехии. Употребление на рынке США - не прослеживается.

Соединитель типа D4 - "ветеран" среди оптических разъемов; резьбовое соединение в розетке, гайка М8х0.75. Ключ, выступающий из корпуса вперед (нетехнологичная конструкция), и "нестандартный" наконечник диаметром 2 мм определили его незначительное потребление, что не помешало попытке скопировать его в конце 80-х годов для нужд нашей "оборонки" (у нас - Лист-Х). Употребление на рынке США - не прослеживается.

Соединитель типа Е-2000 - пластмассовый соединитель типа push-pull от "Diamond". Коннектор имеет наконечник диаметром 2.5 мм, корпуса коннектора и розетки - пластмассовые, со сдвигающимися в процессе включения заглушками, предохраняющими внутренние части от попадания пыли. По сравнению с остальными изделиями конструкция Е-2000 выглядит из-за таких усовершенствований сложнее, стоит существенно дороже. Насколько это оправдано - судить трудно, т.к. пылезащита особо важна вне офиса, а к объектовым пластмассовый соединитель относить, наверное, не следует. С одной стороны, чем сложнее конструкция, тем вероятнее отказы; с другой - мы имеем дело с традиционным качеством от "Diamond" (соединитель рассчитан на 2000 циклов открывания - закрывания), а переключаются коннекторы в реальной жизни нечасто.

Относительно сложная конструкция так и не смогла стать популярной в мире, хотя "родитель" широко рекламировал новинку и развернул ее производство в Восточной Европе. (Сейчас объем продаж Е-2000 в США - менее 1%, прогноз на 2004 и 2009 гг. - тот же.)

Другие одноканальники в России почти не встречаются.

В последние годы чаще начали появляться дорогие импортные коннекторы для ускоренной оконцовки в условиях объекта без использования эпоксидного клея. Такие технологии используют механическую фиксацию волокна встроенными в коннектор зажимами, термофиксацию клеями-расплавами и т. п.

Могут применяться в различных типах стандартных коннекторов.

Например, в коннекторах от 3М Hot Melt используется "передовая адгезивная технология без применения эпоксидных смол". На деле это означает, что коннектор содержит дозу клея-расплава. После нагрева в мини-печке, входящей в состав комплекта инструментов для оконцовки, волокно фиксируется в наконечнике и полируется. Цена таких коннекторов в 1.8 - 2.8 раза выше, чем обычных, цена комплекта инструментов - около 1000 $. Было время, когда продажи таких коннекторов на Западе непрерывно росли, и казалось, они полностью вытеснят эпоксидную технологию, однако этого не произошло, и объем продаж резко упал.

Возможно, это связано с хладотекучестью клеев-расплавов под давлением. В самом деле, если считать, что радиус торца наконечника выполнен правильно, а так называемый offset - отклонение оптической оси волокна от вершины радиуса не превышает 50 мкм, получается, что на волокно O 125 мкм приходится усилие пружины 6 -15 Н, т.е. давление на торец волокна может достигать тысяч атмосфер. Не исключено, что при таком давлении и перепадах температур волокно в клее-расплаве со временем смещается вдоль оси, а это влечет за собой ухудшение или потерю физического контакта, а значит, ведет к увеличению прямых потерь и к росту обратных отражений.

Коннекторы от АМР LightCrimp фиксируют волокно механическим зажимом: расположенные в корпусе коннектора (за наконечником) три шарика из мягкого сплава деформируются с помощью специального инструмента, обжимая волокно с трех сторон. После фиксации обработка волокна идет по традиционной технологии: скол, полировка. Существенным недостатком способа является то, что волокно не зафиксировано в капилляре наконечника. Микронный зазор между ними удерживает влагу и частицы абразива, которые могут в момент включения попасть между торцами коннекторов, сделав невозможным физический контакт волокон.

Этот недостаток ликвидирован, например, в коннекторах Corning® UniCam®

Коннектор уже содержит отрезок волокна, один конец которого вклеен в капилляр и отполирован, а второй конец вставлен в механический сплайс, размещенный в одном корпусе с капилляром.

Процесс оконцевания сводится к зачистке, точному сколу, установке и фиксации волокна в коннекторе. Время установки коннектора - около 1 минуты. Исключены требующие определенной квалификации работы по вклейке волокна и шлифовке торца капилляра.

Это позволяет эффективно применять коннекторы для инсталляции оптических сетей в условиях дефицита времени, а так же при замене и ремонте в условиях объекта.

При оконцевании, помимо стандартного набора инструментов, необходимо использовать универсальное устройство для инсталляции коннекторов UniCam® и универсальное кримпирующее устройство.

Типичные потери при таком способе оконцовки - 0.3 дБ (не следует забывать о том, что плата за скорость и удобство оконцовки - три стыка вместо одного: в сущности, в каждом из пары стыкуемых коннекторов имеется свой неразборный сплайс). Стоимость таких коннекторов в 4…5 раз дороже обычных SC и ST.

А вот "Diamond" считает более целесообразным подваривать оптическое волокно. Применяемая производителем технология установки коннекторов Е-2000 Fuision предполагает приваривание волокна из кабеля к уже установленному в разъеме отрезку волокна. Все операции (разделка, скалывание, сварка) осуществляются стандартным инструментом, но с использованием специальной установочной кассеты.

Соединитель "Diamond Е-2000" является своего рода переходным типом между изделиями сегодняшнего поколения и соединителями новой волны, т.н. small form factor . Вариант исполнения Е-2000 СОМРАСТ DUPLEX выпущен в габаритах стандарта RJ 45, что позволяет существенно уплотнять монтаж. Здесь два коннектора Е-2000 соединены защелкой в дуплексную вилку. Розетка - дуплексная, малогабаритная, моноблочная, с базой между центраторами 7.4 мм. Соединитель достаточно широко распространен в странах Восточной Европы, где расположены новые производственные мощности "Diamond". Среди производителей, лицензировавших у Diamond разъем CECC-LSH (Е-2000 - это торговая марка принадлежащая Diamond) следует отметить Reichle & De-Massari и Krone. Кроме того, дочерняя компания Diamond - FiberCraft - выпускает ряд активных и пассивных продуктов (адаптеры Ethernet, преобразователи среды, коммутационные панели и проч.) с применением E-2000.

Соединители small form factor.

Но настоящая "битва мини-разъемов", как образно назвали этот длительный и пока безрезультатный процесс, разворачивается исключительно в Соединенных Штатах. Соединитель SC, закрепленный стандартом TIA/EIA-586A, перестал удовлетворять требованиям пользователей, в частности, к горизонтальной разводке. SC в дуплексном варианте слишком велик, а это предполагает использование специальных лицевых панелей для розеток. Отсюда - трудности установки совместно с RJ-45, малая плотность монтажа.

В подкомитет TIA FO-6.3 начали поступать запросы на стандартизацию рассчитанного на применение в локальных сетях соединителя, в том числе и для пластиковых (обратите внимание, на то, чем собираются вести последнюю стометровку!) волокон , того же размера, что и стандартные розетки RJ-45 для меди. Новое поколение разъемов должно, с точки зрения заказчиков, удовлетворять следующим требованиям: изначальная ориентация на рынок горизонтальной проводки, наличие дуплексного решения, соответствие по размеру RJ-45. При этом компания Panduit первой представила соединитель FJ (Fiber Jack, или OPTI-JACK). Были представлены также соединители Volition (или VF-45) от 3M, Mini-MT (Mini-MPO) от Siecor (Corning Cable Sistems), Mini-MAC от Berg, LC от Lucent, SCDC/SCQC (2/4 волоконных разъема в корпусе SC) от Siecor и разъем MT-RJ от AMP. Этот тип соединителя AMP продвигает не в одиночку, а при поддержке таких компаний, как Hewlett-Packard, Siecor, Fujikura и USConnec. SCDC/SCQC имеет также поддержку со стороны IBM и Siemens.

Судя по сложившейся ситуации, среди претендентов уже выделились лидеры и выявились два аутсайдера - это разъемы mini MT и SCDC/SCQC.

Оставшиеся разъемы будут применяться хотя бы как решения для коммутационных панелей. Panduit не откажется от своей разработки Opti Jack, 3M будет продвигать свой разъем Volition (VF-45). Эти разработки вряд ли найдут применение где-либо, кроме коммутационных панелей, так как им необходима поддержка производителей активного оборудования, но те сегодня склоняются к двум другим решениям. Это соединители MT-RJ и LC. Соединитель от AMP пользуется поддержкой Hewlett-Packard и Cisco, а также ряда производителей компонентов. Lucent же сама по себе имеет значительный вес как производитель сетевого и телекоммуникационного оборудования, к тому же компанию также поддерживают другие производители. Характерно, что один из ведущих производителей волоконно-оптических продуктов - Molex - приобрел лицензии как на технологию LC, так и на MT-RJ. Соединители LC уже доступны для заказа в России. AMP и Molex также объявили о начале поставок серии MT-RJ в Россию.

Поскольку такие соединители нового поколения (Small form factor ) проникают на отечественный рынок, следует иметь о них хотя бы минимальное представление.

Small form factor как правило, выпускаются либо в дуплексном варианте, либо с возможностью объединения двух коннекторов в один дуплексный; габариты - в стандарте RJ 45. Возможно, что универсальность LC и MU дадут им определенные преимущества в объемах продаж и распространении перед чисто дуплексными решениями; отчасти это подтверждается меньшим спросом на Opti Jack - вряд ли это только следствие недостаточной поддержки со стороны поставщиков активного оборудования, хотя такая поддержка очень существенна. Ниже мы рассмотрим соединители Small form factor в порядке возможной востребованности заказчиками.

Соединитель LC от Lucent - простой коннектор с развязанным от корпуса наконечником, механизм фиксации - RJ-45, выпускается в вариантах MM и SM. Диаметр керамического наконечника 1.25 мм; корпус - пластмассовый, детали - пластик, металл. Потери, по данным Lucent - 0.2 дБ. Легко объединяется в дуплекс.

На начало 2000 г. продажи на Западе составили 2.5 млн. разъемов (40% MM и 60% SM, но объемы продаж ММ растут быстрее).

Соединитель MT-RJ , разработанный консорциумом производителей в составе AMP, Hewlett-Packard, Siecor LIN, Fujikura и USConnec, имеет широкую поддержку в сетевой отрасли. Представляет собой миниатюрный дуплексный разъем, в прямоугольный корпус которого, не имеющий наконечников, но содержащий пару металлических направляющих, предварительно устанавливаются два волокна. Для подключения кабеля предусмотрен механический сплайс. После установки кабель фиксируется поворотом запирающего ключа. Выпускается в вариантах MM и SM. Средние потери - 0.2 дБ. Используется в коммутаторах, маршрутизаторах, концентраторах, сетевых платах и коммутационных платах более чем 45 компаниями. Не сможет стать универсальным, т.к. существует только в дуплексном варианте исполнения; технологически сложен в производстве, в отличие от соединителей с керамическими наконечниками может выпускаться далеко не всеми желающими, даже при покупке лицензий и ноу-хау. Здесь уместно также вспомнить судьбу других коннекторов с нестандартной присоединительной базой - CMA, Biconic и др.

Соединитель MU похож на SC, уменьшенный в поперечнике примерно вдвое. Механизм фиксации аналогичен SC, т.е. сложнее, чем у LC, а с учетом уменьшения габаритов может быть и менее надежен; выпускается в вариантах MM и SM. Наконечник и центратор - керамические, диаметром 1.25 мм, корпус пластмассовый, детали - пластик, металл. Выпускается компанией NTT-AT и другими фирмами.

Соединитель Volition (VF-45) . Широко рекламировался, как не содержащий дорогостоящих керамических наконечников. Однако это же можно считать и недостатком - невозможен физический контакт волокон, что резко ограничивает применение разъема (только многомод 62.5/125 с потерями до 0.5 и более дБ). Соединитель смотрится крупнее рассмотренных выше изделий, имеет излом оси, что может оказаться не всегда удобным в применении.

Резко отличающаяся от других типов коннекторов технология фиксации волокон в V-образных канавках также не добавила популярности новому разъему.

Приведенные в журнале Lightwave сведения о продажах соединителей в 1999 г., прогноз на 2004 и 2009 гг. по рынку США позволяют судить о популярности старых и новых соединителей, их предполагаемой "долговечности" на рынке, приоритетах покупателей. Данные пересчитаны только на коннекторы (изъяты обезличенные объемы продаж розеток, а также сплайсов - механических соединителей двух сколотых волокон в капилляре с иммерсией) и поэтому отличаются от журнальных. Положение на рынках США и Европы может отличаться, однако следует учесть, что основное количество активного оборудования, в том числе для СКС, выпускается под спрос в США, а это во многом определяет структуру пассивных компонентов в мире.

Выводы . В ближайшие годы начнется перераспределение мирового рынка коннекторов. При этом, как считают американские эксперты, до 2009 г. значительно (примерно в четыре раза) снизится доля коннекторов ST и FC, в 1.75 раза уменьшится доля SC коннекторов, резко увеличится доля LC , объем продаж которых сравняется с SC. Доля MT-RJ коннекторов вырастет почти вдвое, однако объем продаж в итоге будет почти вдвое меньше, чем у LC. Е-2000 и VF-45 сохранят свои минимальные доли рынка. Следует учесть, что все это перераспределение будет происходить на фоне общего роста объемов продаж - более чем вдвое за каждые 5 лет вплоть до 2009 г. - последнего прогнозируемого. Поэтому абсолютный рост выпуска будет наблюдаться у всех типов коннекторов. В России эти тенденции обычно проявляются с задержкой в полтора - два года. Возможно, они будут сглажены ориентацией наших предприятий на надежные и, главное, долговечные металлические коннекторы. Новые разъемы будут проникать в Россию в первую очередь с новой высокоскоростной аппаратурой связи и спектрального уплотнения, а также в составе комплексных поставок западных СКС.

  1. Технологии и средства связи, 1-2001, с.72 Традиционные оптические соединители. В. Репин
  2. Технологии и средства связи, 1-2001, с.74 Оптические соединители нового поколения. Н. Гуща
  3. Технологии и средства связи, 1-2001, с. 76 Тенденции и прогнозы. В. Репин


Плоские коннекторы (Flat connectors). Коннекторы серии РС. Коннекторы серии РС. Коннекторы серии SРС (Super Physically Contact). Коннекторы серии UPC. Коннекторы серии APC. Коннекторы типа FC. Адаптер для FC с аттенюатором. Коннектор FC с металлической феррулой. Коннекторы типа ST. Коннекторы типа SC. Biconic. DIN. D4. Е-2000. Коннекторы типа LC. Коннекторы типа MT-RJ. Коннекторы типа VF-45. Коннекторы типа MU. Перспективы для локальных сетей.

Разъемы для оптики

Основные параметры передачи

Ключевые характеристики оптических коннекторов можно разделить на следующие группы: параметры передачи, долговременная стабильность и стойкость к воздействию внешних условий.

Главными параметрами передачи оптических коннекторов являются вносимое затухание и обратное отражение. Эти параметры зависят, главным образом, от таких факторов, как поперечное смещение осей и угла между ними, а также от френелевского отражения оптического сигнала на границе раздела двух оптических сред.

Наибольшее значение для оценки потерь, вносимых разъемным соединением, имеет оптическое затухание. Этот параметр оказывает основное влияние на величину суммарных потерь в оптическом тракте. Величина оптического затухания главным образом зависит от разъюстировки (поперечного отклонения) сердцевин стыкуемых оптических волокон.

Кроме вносимого затухания, важной оптической характеристикой является обратное отражение. Основной источник отраженного сигнала - граница раздела двух сред, например материал оптического волокна и воздуха. Эта составляющая потерь может достигать значительных величин. Кроме того, обратное отражение является непостоянным во времени. Под влиянием внешних воздействий оно в конечном итоге может нарушить стабильность работы системы. Наиболее серьезные проблемы обратное отражение создает для узкополосных лазеров с высокой когерентностью излучения (которые, например, используются в DWDM-системах и в оборудовании для сетей кабельного телевидения).

Вследствие небольшого количества разъемных соединений в тракте требования к величине вносимых ими потерь были несколько снижены по сравнению с требованиями, предъявляемыми, например, к сварным соединениям. Это позволило значительно упростить конструкцию и снизить стоимость изделий, в которых позиционирование стыкуемых волокон ограничивается пассивной поперечной юстировкой.

Технология оконцевания

Производители предлагают различные технологии оконцевания, то есть монтажа коннекторов на оптические волокна .

На определенном этапе (который теперь можно считать первоначальным) предполагалось, что технология создания разъемных соединений будет включать в себя технологические операции по закреплению соединяемых оптических волокон в штекере-заготовке с помощью химического фиксатора. В качестве фиксатора использовался эпоксидный клеи или его аналоги. После закрепления волокно необходимо было сколоть, а затем особым образом отполировать торец разъема с выступающим волокном до достижения требуемых форм торца.

С целью ускорения процесса инсталляции были разработаны технологии без использования эпоксидного клея. Такие технологии используют механическую фиксацию волокна встроенными в коннектор зажимами, термофиксацию клеями-расплавами и т.п. Однако со временем популярность подобных технологий снизилась. Вероятно, причинами этого стала хладотекучесть клеев-расплавов под давлением, вследствие чего оптическое волокно внутри коннектора со временем смещалось вдоль оси, а это влекло за собой ухудшение или потерю физического контакта, и, следовательно, рост вносимых потерь и обратных отражений.

В настоящее время наибольшее распространение получили коннекторы с вмонтированным отрезком оптического волокна в буферном и вторичном покрытиях. Этот отрезок стыкуется с волокном кабеля. Несмотря на то, что вместо одного места стыка получается два, такая технология хорошо зарекомендовала себя на практике. Ее основное достоинство - отсутствие при оконцевании волокон технологической операции полировки торца коннектора, требующей больших затрат времени, а для высокоскоростных сетей - еще и дорогостоящего оборудования шлифовки и контроля. Эти процедуры проводятся в стационарных условиях на предприятии-изготовителе. Подобный подход позволяет производителю практически бесконечно улучшать качество полировки торцов соединяемых волокон, использовать новые технологии, направленные на сокращение потерь и улучшение параметров оптических разъемов, не заставляя при этом покупателя приобретать все более совершенное (и, разумеется, дорогостоящее) оборудование для окончательной подготовки разъемов к работе.

Обеспечение оптического контакта

Технологически сложно добиться получения полностью перпендикулярных торцов с идеальными поверхностями контакта в процессе полировки волокон. Минимизация величины отраженного сигнала требует гарантированного отсутствия воздушного зазора между сердцевинами стыкуемых оптических волокон. Для достижения этого торцы стыкуемых волокон полируются таким образом, чтобы получить сферические поверхности. При стыковке задается продольный прижим волокон, что вызывает упругую деформацию торцов волокон и оптический контакт в области сердцевин соединяемых волокон, при котором воздушный зазор между ними становится минимальным.

Плоские коннекторы (Flat connectors)

Одним из первых решений по подготовке торцевых поверхностей была полировка торца наконечника с укрепленным в нем оптическим волокном перпендикулярно оси волокна. Во избежание непосредственного контакта волокон, который может привести к серьезным повреждениям, - царапинам и сколам, - при таком подходе реализуется углубление около нескольких микрометров (2-3 мкм). Для улучшения характеристик иногда применяется иммерсионный гель, коэффициент преломления которого близок к материалу оптического волокна. Гель заполняет зазор между наконечниками.

Коннекторы серии РС

Способ подготовки торцевых поверхностей под названием "физический контакт" (Physically Contact - PC) предполагает фиксацию оптического волокна в алюминиевом наконечнике. Торец определенным образом полируется с целью достижения полного контакта торцевых поверхностей. Однако при полировке волокна происходят негативные изменения поверхностного торцевого слоя в инфракрасном диапазоне (так называемый "инфракрасный слой"), обусловленные механическими изменениями при полировке. Этот фактор ограничивает применение таких коннекторов на высокоскоростных сетях (565 Мбит/с).

Коннекторы серии SРС (Super Physically Contact)

Для улучшения контакта оптического волокна радиус сердечника был сужен до 20 мм, а в качестве материала наконечника использовался более мягкий цирконий. Благодаря этому подходу снизились такие дефекты полировки, как скосы. Возможность изгиба циркония на субмикронном уровне позволила волокну контактировать даже при скосах в сотни микрон без значительного ухудшения параметров. Однако проблему инфракрасного слоя такая полировка оставляет нерешенной.

Коннекторы серии UPC

Методика полировки торцов UPC (Ultra Physically Contact) характеризуется малыми напряжениями. Полировка осуществляется под контролем сложных и дорогостоящих систем управления. В результате устраняется проблема поверхностного инфракрасного слоя. Параметр отражения значительно улучшен, и такие коннекторы могут применяться в высокоскоростных системах с пропускной способностью 2,5 Гбит/с и выше.

Коннекторы серии APC

Наиболее действенным способом снижения уровня энергии отраженного сигнала является метод полировки торцов оптических волокон под углом 8-12° от перпендикуляра к оси волокна (Angled Physically Contact - АРС). В таком стыке отраженный световой сигнал распространяется под углом большим, чем угол, под которым сигнал вводится в оптическое волокно.

АРС-коннекторы отличаются цветовой маркировкой хвостовиков (как правило, зеленого цвета), поскольку они не могут использоваться совместно с коннекторами другой полировки.

Следует отметить, что некоторые производители меняют местами наименования Super PC и Ultra PC, на что следует обращать внимание во избежание несоответствия соединений проектным параметрам. Особенно это касается вновь устанавливаемых адаптеров и коннекторов на линиях, где уже используется продукция других производителей.

Вообще, при подключении двух коннекторов через адаптер лучше использовать коннекторы одной серии. При сопряжении коннекторов различных серий (flat, super PC, ultra PC) коэффициент отражения смешанной пары будет хуже. Использование других серий совместно с серией APC вообще недопустимо и может привести к выходу одного или обоих коннекторов из строя.

Основные типы разъемов

Коннекторы типа FC

Коннекторы типа FC были разработаны компанией NTT и ориентированы в основном на применение в одномодо-вых линиях дальней связи, специализированных системах и сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Наконечник изготавливается со строгими допусками на геометрические параметры, что гарантирует низкий уровень потерь и минимум обратных отражений. Радиус наконечника обеспечивает физический контакт стыкуемых световодов.

Для фиксации коннектора FC на розетке используется накидная гайка с резьбой М8х0,75. В данной конструкции подпружиненный наконечник жестко не связан с корпусом и хвостовиком, что усложняет и удорожает коннектор, однако такое дополнение окупается повышением надежности.

Коннекторы типа FC устойчивы к воздействию вибраций и ударов, что позволяет применять их на соответствующих сетях, например, непосредственно на подвижных объектах, а также на сооружениях, расположенных вблизи железных дорог.

Коннекторы типа ST

Коннекторы БТбыли разработаны специалистами компании AT&T в середине 80-х годов. Удачная конструкция этих коннекторов обусловила появление на рынке большого числа их аналогов.

В настоящее время коннекторы ST получили широкое распространение в оптических подсистемах локальных сетей.

Керамический наконечник диаметром 2,5 мм, с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Для защиты торца волокна от повреждений при прокручивании в момент установки применяется боковой ключ, входящий в паз розетки; вилка на розетке фиксируется байонетным замком.

Коннекторы ST просты и надежны в эксплуатации, легко устанавливаются, относительно недороги. Однако простота конструкции имеет и отрицательные стороны: эти коннекторы чувствительны к резким усилиям, прилагаемым к кабелю, а также к значительным вибрационным и ударным нагрузкам, ведь наконечник представляет собой единый узел с корпусом и хвостовиком. Этот недостаток ограничивает применение подобного типа коннекторов на подвижных объектах.

Детали коннекторов ST обычно изготавливаются из цинкового сплава с никелированием, реже из пластмассы.

При сборке коннекторов арамидные нити упрочняющей оплетки кабеля укладываются на поверхность задней части корпуса, после чего надвигается и обжимается металлическая гильза. Такая конструкция позволяет в значительной мере снизить вероятность обрыва волокна при выдергивании коннектора. Для дополнительного увеличения механической прочности соединительных шнуров в коннекторах ряда производителей предусматривается обжим на задней части корпуса не только арамидных нитей, но и внешней оболочки миникабеля.

Активное применение коннекторов ST обусловило поиск вариантов улучшения качественных показателей этой продукции. Таким образом, по мере разработки появились SPS- и UPS-версии коннекторов такого типа.

Коннекторы типа SC

Одним из недостатков коннекторов типов FC и ST считается необходимость вращательного движения при подключении к адаптеру. Для устранения этого недостатка, препятствующего увеличению плотности монтажа на лицевой панели, разработаны коннекторы типа SC. Корпус коннектора SC в поперечном сечении прямоугольный. Наконечник не связан жестко с корпусом и хвостовиком.

Подключение и отключение коннектора SC производится линейно (push-pull), что предохраняет наконечники коннекторов от прокручивания друг относительно друга в момент фиксации в адаптере. Фиксирующий механизм открывается только при вытягивании коннектора за корпус. К недостаткам коннекторов SC следует отнести несколько более высокую цену и меньшую механическую прочность относительно рассмотренных ранее коннекторов типов FC и ST. Сила, выдергивающая коннектор SC из адаптера, регламентируется в пределах 40 Н, в то время как для серии FC это значение практически может равняться прочности миникабеля. Как и в случае с коннекторами ST, этот недостаток ограничивает применение коннекторов типа SC на подвижных объектах.

Biconic

Разъемы типа Biconic получили распространение в США благодаря усилиям Lucent Technologies. Корпус коннектора выполняется из пластмассы и может содержать ключ, препятствующий вращательному движению сердечника при вкручивании. Нестандартный подпружиненный керамический сердечник выполнен в форме усечен-ного конуса, а у основания диаметр конуса почти равен внутреннему диаметру корпуса. Такая конструкция на вид обладает большей надежностью, чем ее аналоги. Однако исследования показали, что этот тип коннекторов проигрывает по температурной стабильности характеристик коннекторам с феррулой сложной многослойной конструкции. Кроме того, нестандартная конструкция сердечника усложняла использование таких коннекторов в гибридных разъемах.

В настоящее время коннекторы Biconic полностью уступили свои позиции современным типам коннекторов с сердечником стандартных размеров.

DIN

Традиционно изделия, соответствующие этому стандарту, были широко распространены в Германии и других европейских государствах. Стандартный керамический сердечник диаметром 2,5 мм выступает далеко за пределы корпуса. Пластмассовый корпус снабжен ключом, препятствующим вращению сердечника вокруг своей оси при вкручивании в адаптер.

Коннекторы типа DIN нашли применение в тестовой аппаратуре и телекоммуникационном оборудовании.

D4

Коннекторы D4 также получили распространение в Европе. Основными особенностями их конструкции являются ключ, выступающий за пределы металлического корпуса (нетехнологичная конструкция) и нестандартный керамический сердечник диаметром 2 мм. Для фиксации на розетке коннекторы снабжаются накидной гайкой с резьбой М8х0,75.

Несмотря на указанные недостатки, этот тип коннекторов выпускался довольно долго, и к концу 90-х годов прошлого века уже производились PS-, SPS- и UPS-версии таких коннекторов. Основными производителями коннекторов D4 являются западноевропейские фирмы, однако для производства оборудования, поставляемого европейским операторам, выпуск таких коннекторов налажен и в США.

Е-2000

В коннекторах типа Е-2000 реализована одна из наиболее сложных конструкций. Подключение и отключение коннектора производится линейно (push-pull). Фиксирующий механизм открывается только при вытягивании коннектора за корпус с применением специальной вставки-ключа. Случайное выключение такого коннектора без использования ключа практически невозможно (то есть необходима нагрузка для разрушения защелки корпуса коннектора).

Наконечник в коннекторах типа Е-2000 выполняется в виде многослойной феррулы диаметром 2,5 мм. Корпусы коннекторов и адаптеров изготавливаются из прочного полимера. Основное новшество - пластмассовые шторки, выполняющие функцию заглушек при отключении адаптера. Они также служат для предотвращения попадания пыли на плоскость оптического контакта.

Этот тип коннекторов отличается улучшенными оптическими показателями и стабильными температурными характеристиками, а также высокой надежностью (гарантировано не менее 2 тыс. циклов включения-выключения). Сечение корпуса - квадратное, что позволяет легко реализовать дуплексные коннекторы.

Кроме прочего, следует отметить неоспоримое достоинство этой продукции - снижение влияния человеческого фактора. При включении предупреждены: возможность повреждения торцевой поверхности оптического волокна за счет избыточных усилий, направленных на соединение двух коннекторов; недостаточное усилие включения; неверное позиционирование, а также огрехи при очистке поверхностей оптического контакта.

Коннектор разработан и производится компанией Diamond, уделяющей особое внимание качеству продукции. Кроме западноевропейских государств, производственные мощности этой компании расположены и в странах Восточной Европы. Несмотря на высокие оптические показатели и надежность конструкции, ценовой фактор все-таки сдерживает широкомасштабное внедрение Е-2000.

Появление Е-2000 положило начало новому этапу в создании коннекторов для оптических волокон - разработке коннекторов SFF (Small Form Factor), о которых речь пойдет далее.

Разъемы с увеличенной плотностью монтажа

Анализ преимуществ и недостатков коннекторов, разработанных ранее, показал необходимость создания новых типов коннекторов. При тех же рабочих параметрах, что и у своих предшественников, они должны были обеспечивать большую экономию места, чтобы увеличить плотность монтажа на лицевых панелях.

За основу для размеров адаптеров были приняты габариты разъема для металлических токоведущих жил типа RJ-45. Это позволило использовать общие конструктивные решения под установку RJ-45 и оптических коннекторов разрабатываемых конструкций.

Ведущие производители пассивных оптических компонентов включились в разработку коннекторов нового поколения. Из целого перечня моделей наибольшее распространение получили коннекторы типа LC, MT-RJ,VF-45n MU. Ряд производителей пассивных оптических компонентов уже приобрели лицензии на выпуск коннекторов этих типов, и объемы продаж их постоянно растут.

Коннекторы типа LC

Разработчик коннекторов типа LC - американская компания Lucent Technologies - является одним из ведущих производителей телекоммуникационного оборудования, а следовательно и "законодателем мод" в области пассивной оптики. Этому типу разъемов изначально (и, как впоследствии оказалось, вполне обоснованно) отводилась роль лидера продаж как в Соединенных Штатах, так и в Европе.

Конструкция коннектора сравнительно проста: керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Механизм фиксации - защелка (аналогично RJ-45). Потери, по данным производителя, - порядка 0,2 дБ. Пара коннекторов легко объединяется в дуплекс.

Коннекторы типа MT-RJ

Коннекторы MT-RJ разработаны консорциумом производителей в составе AMp Hewlett-Packard, Siecor LIN, Fujikura и USConnec. Эти коннекторы изготавливаются исключительно в виде дуплексных пар и поэтому не могут считаться универсальными. Технологически они сложны в производстве.

Корпус коннекторов содержит пару металлических направляющих, в которые предварительно установлены два оптических волокна. Оптические волокна кабеля подвариваются к предустановленным волокнам. После установки кабель фиксируется поворотом запирающего ключа.

Средняя величина потерь составляет порядка 0,2 дБ.

Коннекторы типа MT-RJ применяются в коммутаторах, концентраторах и маршрутизаторах многими ведущими производителями оборудования.

Коннекторы типа VF-45

Корпорация 3М также не могла не отреагировать на рыночные тенденции относительно внедрения коннекторов SFF. Компания разработала собственную конструкцию - дуплексный коннектор VF-45 для одномодовых и многомодовых волокон - и стала активно продвигать его на рынке. Он также может реализовываться под названием SJ.

Этот коннектор выполнен по технологии push-pull - подключение производится линейно. Следует отметить, что в целях эргономичности хвостовик коннектора наклонен под углом примерно в 45° от плоскости соединения волокон, то есть опущен вниз. При этом обеспечивается высокая плотность монтажа - используется панель для монтажа RG-45. Вместо керамических феррул, применяемых большинством производителей, используется V-образная канавка, что удешевляет коннектор в производстве.

Производитель гарантирует качество и стабильность характеристик, основываясь на более чем десятилетнем опыте эксплуатации оптических соединителей, выполненных с применением этой технологии. Коннектор снабжен самозащелкивающейся шторкой для предотвращения попадания пыли на поверхность оптического контакта.

Производитель гарантирует высокие показатели качества: уровень затухания не выше 0,75 дБ, а обратное отражение составляет менее 26 дБ.

Как и коннекторы типа MT-RJ, VF-45 предназначены для использования в телекоммуникационном оборудовании: коммутаторах, концентраторах, маршрутизаторах.

Коннекторы типа MU

Коннекторы этого типа разработаны компанией NTT и производятся рядом других компаний. Они представляют собой уменьшенный приблизительно вдвое аналог SC. Механизм фиксации за счет уменьшения габаритов в коннекторах этого типа может быть менее надежен.

Наконечник и центратор - керамические, диаметром 1,25 мм. Корпус выполнен из пластмассы, детали - полимерные и металлические.

Доля оборудования, выпускаемого с коннекторами типа MU, относительно невелика, однако есть перспективы роста, в первую очередь за счет снижения доли использования в оборудовании коннекторов более ранних разработок.

Предполагается, что коннекторы нового поколения постепенно займут лидирующие позиции на рынке, а затем и вовсе вытеснят своих предшественников, если к этому времени не будут разработаны более совершенные конструкции коннекторов, объединяющих в себе достоинства вышеперечисленных моделей и, вместе с тем, превосходящие их по каким-либо факторам (к примеру, по цене или надежности).

Перспективы для локальных сетей

Сегодня активное применение одномодовых оптических волокон при строительстве локальных сетей определяет необходимость производства многих разъемов как в одномодовом, так и в многомодовом исполнении.

Дальнейшее совершенствование структурированных кабельных сетей возможно с использованием материалов, не применяющихся в настоящее время (например, волокна из полиамида в качестве среды передачи). Это определит необходимость разработки специализированных пассивных оптических компонентов, что выделит решения для локальных сетей в отдельную самостоятельную сферу. В результате невозможно будет использовать существующие ныне конструкции пассивных оптических компонентов (в данном случае оптических разъемов) в качестве универсальных. Вместе с тем появление новых конструктивных решений может стать мощным толчком как для модификации существующих, так и для создания специализированных разъемов новых типов.

Еще один движущий фактор совершенствования разъемов - это разработка более высокоскоростного оборудования систем передачи. Следствием этого станут новые требования к пассивным оптическим компонентам, что также обуславливает необходимость совершенствования существующих и создание новых конструкций оптических разъемов.

На сегодняшний день разработано более 70 типов коннекторов различного назначения для ВОЛС. Наиболее распространенные - симметричные оптические разъемы с конструктивным исполнением штекерного типа. Для соединения таких коннекторов используют специальные оптические адаптеры. Благодаря этим устройствам соединяемые оптические разъемы могут быть как одного, так и нескольких типов.

Описание конструкции оптического коннектора

Штекерные оптические разъемы выглядят следующим образом: оптоволокно фиксируется в специальном прецизионном наконечнике типа "феруле", который вставляется во вставку-центратор. Крепеж разъемов в адаптере может быть как байонетного типа, так и резьбового или замкового. В некоторых видах оборудования требуется подключение дуплексных пар оптоволокна, специально для этого были разработаны оптические разъемы дуплексного типа. Изначально реализация подобных устройств достигалась за счет симметричного пластмассового зажима, содержащего гнезда, в которые вкладывалась пара коннекторов, после чего они фиксировались защелкой. Больше всего для этого подходили разъемы с квадратными корпусами. Однако со временем появилась необходимость разработки оптических разъемов дуплексного типа в едином корпусе.

Очередным этапом развития производства оптоволоконных разъемов стало создание специальных коннекторов ленточного типа в цельном буферном покрытии. Тем не менее сегодня такой вид не пользуется особой популярностью из-за высокой сложности получения качественного стыка, даже с применением сварочного метода. В настоящее время основными потребителями упомянутых разъемов являются Япония и США.

Основные технические характеристики

Главными параметрами оптических коннекторов являются: долговременная стойкость и стабильность ко внешним условиям. На пропускную способность влияет обратное отражение и вносимое затухание. Эти характеристики зависят от поперечного смещения осей, а также угла между ними. А еще от френелевского отражения сигнала на границе разделения двух сред. Максимальным значением потерь, которое вносится разъемом, является оптическое затухание. Эта характеристика оказывает влияние на размер суммарных потерь в данном тракте. Этот параметр напрямую зависит от поперечного отклонения (разъюстировки) сердцевин соединяемых

Следующий важный параметр - это обратное отражение. Главный источник, влияющий на данную характеристику, - это граница разделения двух сред (воздуха и волокна). Эта составляющая может достигать существенных величин. Более того, обратное отражение может быть переменчивым во времени, то есть под влиянием внешних факторов оно в конечном итоге способно нарушить работоспособность всей системы.

Оптический аудиокабель

Сейчас большую популярность в устройстве аудиосистем завоевывают Главным преимуществом таких проводов является отсутствие помех, а значит, сигнал останется чистым и четким, несмотря на длину такого удлинителя. хорошо зарекомендовали себя надежной работой в сложных электромагнитных условиях, там, где медные провода были не в состоянии справиться с помехами. В компьютерной технике особо популярен кабель SPDIF (Sony-Philips Digital Interface) - это интерфейс для передачи аудиосигналов в цифровом виде. Он передает между устройствами без потери качества, которая неизбежно возникает при использовании аналогового метода.