Такое природное явление, как гроза, сопровождаемое громом и молнией, помимо демонстрации внешнего величия, несет опасность для жизни людей и целостности строений. Попадание молнии, представляющей собой электрический разряд огромной силы, может привести к пожару и причинить вред здоровью человека, вплоть до смертельного исхода. Для защиты от молний применяются системы молниезащиты. Эти системы защиты от грозы при правильном монтаже обеспечивают полную безопасность от поражения молнией.

При прохождении грозовых туч, между ними и поверхностью земли возникает электрический заряд. Это сравнимо с двумя обкладками конденсатор, где земля имеет нулевой потенциал, а грозовые тучи накапливают заряд. Величина этого заряда имеет огромные значения. При разряде молнии величина тока может достичь значения в 500 тысяч ампер, а напряжение в десятки и сотни миллионов вольт.

Как известно, электрический разряд происходит при достижении определенной величины напряженности электрического поля между проводниками, которые находятся ближе друг к другу, чем остальные. Именно поэтому молния обычно ударяет в самые высокие строения и деревья. Это свойство положено в основу принципа устройства системы для грозозащиты: принять удар молнии в самой высокой точке объекта на себя и отвести его в землю, нейтрализуя тем самым опасное воздействие громадных величин тока и напряжения.

Поэтому молниеприемник системы защиты от грозы располагают в самой верхней точке строения. Для частного дома такой точкой может быть дымовая труба (дымоход), стойка телевизионной антенны, конек крыши. Удобным местом для нее может послужить высокое дерево, стоящее рядом с домом. Дерево должно быть выше всех рядом стоящих строений.

Современные системы защиты от грозы

Существуют две системы внешней грозозащиты - пассивная и активная. Пассивная система была спроектирована еще в восемнадцатом столетии, а активная система относится к современным разработкам. На ней мы остановимся немного позже.

Одним из ученых, занимавшихся выяснением природы грозовых молний, был американский ученый и политик Бенджамин Франклин. Результаты его опытов в числе прочих исследований были положены в проектирование устройства внешней грозозащиты. Оно достаточно простое и его по силам изготовить самостоятельно из подручных средств. Пассивное устройство состоит всего из трех частей: молниеприемника, токоотвода и цепи заземления.

Внутренние системы защиты от грозы служат для защиты бытовых электроприборов и оборудования от поражения импульсами высокого напряжения при попадании молний в линии электропередач (ЛЭП). С этой целью перед счетчиком устанавливается устройство защиты от импульсных перенапряжений (УЗИП). Оно разработано таким образом, чтобы при поступлении на него импульса высокого напряжения, он отводился из электрической сети по цепи заземления. Существуют двух и трехфазные устройства.

Рассмотрим составные части внешней системы для грозозащиты. Она состоит из молниеприемника, токоотвода и устройства (цепи) заземления. Следует обратить внимание на то, что цепь заземления домашней электрической сети и системы молниезащиты должны быть независимы друг от друга.

Молниеприемник

При проектировании молниеприемника для грозозащиты необходимо учитывать такие факторы: тип кровли здания, наличие рядом с домом высоких строений и деревьев, площадь территории, нуждающейся в защите.

Самым простым молниеприемником является металлический штырь диаметром не менее 8-10 мм или аналогичная по размеру толстостенная металлическая труба. Это устройство должно размещаться таким образом, чтобы его верхняя точка находилась не ниже, чем на 2 метра от самой высокой части крыши. Защищаемая таким образом площадь напрямую зависит от высоты нахождения вершины штыря и равна площади окружности с радиусом, равным этой высоте.

Штыревые молниеприемники являются оптимальным решением при проектировании грозозащиты для металлической кровли. При попадании молнии энергия разряда отводится по токоотводу в цепь заземления.

Если рядом с домом находится высокое дерево (превышающее высоту дома), имеет смысл для увеличения защищаемой от молнии площади поместить штыревое устройство приема молнии на верхушке этого дерева. Штырь также должен возвышаться над кроной дерева не менее чем на 2 метра.

При проектировании защиты для строений с шиферными крышами часто используют в качестве молниепринимающего устройства металлический трос подходящего диаметра, который натягивается вдоль конька кровли на высоте не менее полуметра. Защищаемая таким образом площадь имеет форму шалаша. Заземление в этом случае необходимо выполнять с двух сторон троса.

Защита строений с черепичной крышей имеет свои особенности. Одним из решений при проектировании грозозащиты для такой кровли является использование сетчатого приемника разряда. Сетка выполняется из стальной проволоки диаметром не менее 6 мм и размером ячейки около 5-6 метров.

Контакт приемника разряда с токоотводом предпочтительно выполнять сваркой, но допускается и болтовое соединение.

Видео “Системы молниезащиты”

Токоотвод

Токоотвод выполняет важную роль в системе грозозащиты - отводит энергию разряда молнии в цепь заземления. Для этих целей хорошо подходит стальная проволока с диаметром 6 мм и более, так как проходящий через нее ток может достигать величин в сотни тысяч ампер.

Лучшим способом соединения токоотвода с приемником разряда и цепью заземления является сварка. При невозможности использования сварки можно использовать специальные болтовые зажимы, обеспечивающие хороший контакт соединений.

Токоотвод не должен проходить вблизи от оконных и дверных проемов, иметь минимальную (по возможности) длину и не содержать резких изгибов для обеспечения пожарной безопасности. Резкие изгибы токоотвода при попадании молнии в систему грозозащиты могут вызвать искрение и возгорание конструкций дома. Следует также избегать касания токоотвода к металлическим частям строения, например, гаражным воротам и тому подобному.

Заземление

Проектирование цепи заземления не представляет большой сложности. Следует учесть то, что по требованиям техники безопасности она должна находиться как можно дальше от входных дверей в дом, тропинок и других мест, где могут оказаться люди во время грозы.

Самое простое заземление можно выполнить путем вбивания толстого металлического прута (арматуры) на глубину двух-трех метров с последующим соединением его с токоотводом с помощью сварки или болтового крепежа. Желательно, чтобы площадь устройства заземления была побольше. Поэтому рекомендуется использовать несколько соединенных между собой прутьев. Если вбивание на такую глубину является проблемой из-за особенностей почвы, можно выкопать яму или траншею глубиной ни менее метра и уложить туда любую массивную металлическую конструкцию, например, спинку от старой кровати. А уже к этой конструкции путем сварки подсоединить токоотвод. Сварное соединение необходимо защитить от коррозии любым способом, например, покраской.

Активная защита

Этот вид защиты от молний был разработан в восьмидесятых годах прошлого столетия во Франции. Состоит из тех же основных частей, что и пассивная защита. Отличием является то, что приемник разряда молнии представляет собой устройство, которое формирует зону ионизированного воздуха вокруг него. Устройство не требует внешнего питания и активизируется при приближении грозы под действием изменения напряженности электрического поля. Считается, что такая зона ионизированного воздуха является своего рода приманкой для молнии, что обеспечивает большую в несколько раз площадь защиты.

Молния всегда будила фантазию человека и стремление познавать мир. Она принесла на землю огонь, приручив который, люди стали могущественнее. Мы пока не рассчитываем на покорение этого грозного природного явления, но хотели бы «мирного сосуществования». Ведь чем совершеннее создаваемая нами техника, тем опаснее для нее атмосферное электричество. Один из способов защиты - заранее, с помощью специального имитатора, оценивать уязвимость промышленных объектов для тока и электромагнитного поля молнии.

Любить грозу в начале мая легко поэтам и художникам. Энергетик, связист или космонавт от начала грозового сезона в восторг не придет: слишком большие неприятности он обещает. В среднем на каждый квадратный километр территории России ежегодно приходится около трех ударов молний. Их электрический ток доходит до 30 000 А, а у самых мощных разрядов может превысить 200 000 А. Температура в хорошо ионизированном плазменном канале даже умеренной молнии может достигать 30000 °С, что в несколько раз больше, чем в электрической дуге сварочного аппарата. И конечно, это не сулит ничего хорошего многим техническим объектам. Пожары и взрывы от прямого попадания молнии хорошо знакомы специалистам. А вот обыватели риск подобного события явно преувеличивают.

Наконечник флагштока останкинской телебашни. Видны следы оплавленияВ реальности «небесная электрозажигалка» не столь уж эффективна. Представьте: вы пытаетесь развести огонь во время урагана, когда из-за сильного ветра трудно зажечь даже сухую солому. Еще мощнее воздушный поток от канала молнии: ее разряд рождает ударную волну, громовой раскат которой срывает и гасит пламя. Парадокс, но слабая молния пожароопаснее, особенно, если по ее каналу в течение десятых долей секунды (целая вечность в мире искровых разрядов!) протекает ток около 100 А. Последний мало чем отличается от дугового, а электрическая дуга подожжет все, способное гореть.

Впрочем, для здания обычной высоты попадание молнии — явление не частое. Опыт и теория показывают: она «притягивается» к наземному сооружению с расстояния, близкого к трем его высотам. Десятиэтажная башня соберет около 0,08 молний ежегодно, т.е. в среднем 1 удар за 12,5 лет эксплуатации. Дачный домик с мансардой — примерно в 25 раз меньше: в среднем владельцу придется «ждать» около 300 лет.

Но не будем и преуменьшать опасность. Ведь если молния ударит хотя бы в один из 300-400 поселковых домов, местные жители вряд ли сочтут это событие ничтожным. А есть объекты гораздо большей протяженности — скажем, линии электропередачи (НЭП). Их длина вполне может превысить 100 км, высота — 30 м. Значит, справа и слева каждая из них соберет удары с полос шириной по 90 м. Общая площадь «стягивания» молний превысит 18 км2, их число — 50 за год. Разумеется, стальные опоры линии при этом не сгорят, провода не расплавятся. В наконечник флагштока Останкинской телебашни (Москва) молнии ударяют примерно 30 раз в год, однако ничего страшного не происходит. А чтобы понять, чем они опасны для ЛЭП, нужно познать природу электрических, а не термических воздействий.

ГЛАВНАЯ СИЛА МОЛНИИ

При ударе в опору электрической линии ток стекает в землю через сопротивление заземления, которое, как правило, составляет 10-30 Ом. При этом даже «средняя» молния, с током 30 000 А, создает напряжение 300-900 кВ, а мощная — в несколько раз больше. Так возникают грозовые перенапряжения. Если они достигают мегавольтного уровня, изоляция ЛЭП не выдерживает и пробивается. Происходит короткое замыкание. Линия отключается. Еще хуже, когда канал молнии прорывается непосредственно к проводам. Тогда перенапряжение на порядок выше, чем при поражении опоры. Борьба с этим явлением и сегодня остается трудной задачей электроэнергетиков. Причем по мере совершенствования техники ее сложность лишь нарастает.

Останкинская телебашня выступила в роли молниеотвода, пропустив удар молнии на 200 м ниже вершиныЧтобы удовлетворить стремительно растущие потребности человечества в энергии, современные электростанции должны объединяться в мощные системы. В России сейчас функционирует единая энергетическая система: все ее объекты работают взаимосвязанно. Поэтому случайный выход из строя даже одной ЛЭП или электростанции может привести к серьезным последствиям, похожим на происшедшее в Москве в мае 2005 г. В мире отмечено немало системных аварий по вине молний. Одна из них — в США в 1968 г. нанесла многомиллионный ущерб. Тогда грозовой разряд отключил одну ЛЭП, и энергосистема не справилась с возникшим дефицитом энергии.

Неудивительно, что защите ЛЭП от молний специалисты уделяют должное внимание. По всей длине воздушных линий напряжением 110 кВ и более подвешивают специальные металлические тросы, стремясь сверху уберечь провода от прямого попадания. Их изоляцию максимально усиливают, сопротивление заземления опор предельно снижают, а для дополнительного ограничения перенапряжений используют полупроводниковые устройства, подобные тем, что защищают входные цепи компьютеров или высококачественных телевизоров. Правда, их сходство — только в принципе действия, рабочее же напряжение для линейных ограничителей исчисляется миллионами вольт — оцените масштабы затрат на защиту от молнии!

Часто спрашивают, реально ли спроектировать абсолютно молниестойкую линию? Ответ однозначный — да. Но тут неизбежны два новых вопроса: кому это надо и сколько будет стоить? Ведь если нельзя повредить надежно защищенную ЛЭП, то можно, например, сформировать ложную команду на отключение линии или просто разрушить низковольтные цепи автоматики, которые в современном исполнении построены на микропроцессорной технике. Рабочее напряжение микросхем с каждым годом снижается. Сегодня оно исчисляется единицами вольт. Вот где простор для молнии! И нет нужды в прямом ударе, ибо она способна действовать дистанционно и сразу на больших площадях. Главным ее оружием становится электромагнитное поле. Выше говорилось о токе молнии, хотя для оценки электродвижущей силы магнитной индукции важен и ток, и скорость его роста. У молнии последняя может превышать 2 . 1011 А/с. В любом контуре площадью 1 м2 на расстоянии 100 м от канала молнии такой ток наведет напряжение примерно вдвое выше, чем в розетках жилого дома. Не нужно большой фантазии, чтобы представить судьбу микросхем, рассчитанных на напряжение порядка одного вольта.

В мировой практике известно множество тяжелых аварий из-за разрушения цепей управления грозовым разрядом. В этот перечень попадают повреждения бортовой аппаратуры авиалайнеров и космических кораблей, ложные отключения сразу целых «пакетов» высоковольтных ЛЭП, выход из строя аппаратуры антенных систем мобильной связи. К сожалению, заметное место здесь занимают и «бьющие» по карману обычных граждан повреждения бытовой техники, все больше заполняющей наши дома.

ПУТИ ЗАЩИТЫ

Мы привыкли рассчитывать на защиту молниеотводами. Помните оду великого естествоиспытателя XVIII в., академика Михаила Ломоносова на их изобретение? Наш знаменитый соотечественник восторгался победой, говорил, что небесный огонь перестал быть опасным. Конечно, это приспособление на крыше жилого дома не даст молнии поджечь деревянный настил или другие горючие строительные материалы. В отношении же электромагнитных воздействий он бессилен. Совершенно безразлично, течет ли ток молнии в ее канале или по металлическому стержню молниеотвода, все равно он возбуждает магнитное поле и наводит за счет магнитной индукции во внутренних электрических цепях опасное напряжение. Для эффективной борьбы с этим молниеотвод обязан перехватывать канал разряда на отдаленных подступах к защищаемому объекту, т.е. стать очень высоким, потому что наводимое напряжение обратно пропорционально расстоянию до проводника с током.

Сегодня накоплен большой опыт использования таких конструкций разной высоты. Однако статистика не слишком утешительная. Зону защиты стержневого молниеотвода обычно представляют в виде конуса, осью которого он является, но с вершиной, расположенной несколько ниже, чем его верхний конец. Обычно 30-метровый «стержень» обеспечивает 99%-ную надежность защиты здания, если возвышается над ним примерно на 6 м. Добиться этого — не проблема. Но с увеличением высоты молниеотвода расстояние от его вершины до «прикрываемого» объекта, минимально необходимое для удовлетворительной защиты, стремительно нарастает. Для 200-метровой конструкции той же степени надежности этот параметр уже превышает 60 м, а для 500-метровой — 200 м.

В подобной роли выступает и упомянутая Останкинская телебашня: она не в состоянии защитить самое себя, пропускает удары молнии на расстоянии 200 м ниже вершины. Радиус зоны защиты на уровне земли для высоких молниеотводов также резко увеличивается: у 30-метрового он сопоставим с его высотой, у той же телебашни — 1/5 ее высоты.

Иными словами, нельзя надеяться, что молниеотводы традиционной конструкции сумеют перехватить молнию на дальних подступах к объекту, особенно если последний занимает большую площадь на поверхности земли. Значит, нужно считаться с реальной вероятностью грозового разряда в территорию электрических станций и подстанций, аэродромов, складов жидкого и газообразного топлива, протяженных антенных полей. Растекаясь в земле, ток молнии частично попадает в многочисленные подземные коммуникации современных технических объектов. Как правило, там находятся электрические цепи систем автоматики, управления и обработки информации - тех самых микроэлектронных устройств, о которых говорилось выше. Кстати, расчет токов в земле сложен даже в самой простейшей постановке. Трудности усугубляются из-за сильных изменений сопротивления большинства грунтов в зависимости от силы растекающихся в них токов килоамперного уровня, как раз свойственных разрядам атмосферного электричества. К расчету цепей с такими нелинейными сопротивлениями неприменим закон Ома.

К «нелинейности» грунта добавляется вероятность образования в нем протяженных искровых каналов. Ремонтные бригады кабельных линий связи хорошо знакомы с такой картиной. От высокого дерева на лесной опушке по земле тянется борозда, будто от сохи или старинного плуга, и обрывается точно над трассой подземного телефонного кабеля, который в этом месте поврежден - металлическая оболочка смята, изоляция жил разрушена. Так проявилось действие молнии. Она ударила в дерево, и ее ток, растекаясь по корням, создал в грунте сильное электрическое поле, сформировал в нем плазменный искровой канал. Фактически молния как бы продолжила свое развитие, только не по воздуху, а в земле. И так она может проходить десятки, а в особенно плохо проводящих ток грунтах (скальных или вечномерзлых породах) и сотни метров. Прорыв ее к объекту осуществляется не традиционным путем — сверху, а, минуя любые молниеотводы, снизу. Скользящие разряды вдоль поверхности грунта хорошо воспроизводятся в лаборатории. Все эти сложные и сильно нелинейные явления нуждаются в экспериментальном исследовании, моделировании.

Ток для рождения разряда может быть сформирован искусственным импульсным источником. Энергия около минуты накапливается в конденсаторной батарее, а потом за десяток микросекунд «выплескивается» в бассейн с грунтом. Подобные емкостные накопители есть во многих высоковольтных исследовательских центрах. Их габариты достигают десятков метров, масса — десятков тонн. Такие не доставишь на территорию электрической подстанции или другого промышленного объекта, чтобы в полном масштабе воспроизвести условия растекания токов молнии. Это удается разве что случайно, когда объект соседствует с высоковольтным стендом — например, в открытой установке Сибирского научно-исследовательского института энергетики импульсный генератор высоких напряжений размещен рядом с ЛЭП в 110 кВ. Но это, конечно, исключение.

ИМИТАТОР УДАРА МОЛНИИ

На деле же речь должна идти не об уникальном эксперименте, а о рядовой ситуации. В полномасштабной имитации тока молнии крайне нуждаются специалисты, поскольку только так можно получить достоверную картину распределения токов по подземным коммуникациям, измерить последствия воздействия электромагнитного поля на устройства микропроцессорной техники, определить характер распространения скользящих искровых каналов. Соответствующие испытания должны стать массовыми и производиться до ввода в эксплуатацию каждого принципиально нового ответственного технического объекта, как это давно делается в авиации, космонавтике. Сегодня нет иной альтернативы, кроме создания мощного, но малогабаритного и мобильного источника импульсных токов с параметрами тока молнии. Его макетный образец уже существует и успешно испытан на подстанции «Донино» (110 кВ) в сентябре 2005 г. Все оборудование разместилось в заводском прицепе от серийной «Волги».

Мобильный испытательный комплекс построен на основе генератора, который преобразует механическую энергию взрыва в электрическую. Этот процесс в основном хорошо известен: он имеет место в любой электрической машине, где механическая сила движет ротор, противодействуя силе его взаимодействия с магнитным полем статора. Принципиальное различие же состоит в исключительно высокой скорости выделения энергии при взрыве, быстро разгоняющего металлический поршень (лайнер) внутри катушки. Он за микросекунды вытесняет магнитное поле, обеспечивая возбуждение высокого напряжения в импульсном трансформаторе. После дополнительного усиления импульсным трансформатором напряжение формирует ток в испытуемом объекте. Идея этого устройства принадлежит нашему выдающемуся соотечественнику, «отцу» водородной бомбы академику А.Д. Сахарову.

Взрыв в специальной высокопрочной камере разрушает лишь катушку длиной 0,5 м и лайнер внутри нее. Остальные элементы генератора используют многократно. Схему можно настроить так, чтобы скорость роста и длительность формируемого импульса соответствовали аналогичным параметрам тока молнии. Причем его удается «вогнать» в объект большой длины, например, в провод между опорами ЛЭП, в контур заземления современной подстанции или в фюзеляж авиалайнера.

При испытаниях макетного образца генератора в камеру заложили всего 250 г взрывчатки. Этого достаточно для формирования импульса тока амплитудой до 20 000 А. Правда, для первого раза на столь радикальное воздействие не пошли — ток ограничили искусственно. При запуске установки раздался лишь легкий хлопок погашенного камерой взрыва. А проверенные затем записи цифровых осциллографов показали: импульс тока с заданными параметрами успешно был введен в молниеотвод подстанции. Датчики отметили скачок напряжения в различных точках контура заземления.

Ныне штатный комплекс в процессе подготовки. Он будет настроен на полномасштабную имитацию токов молнии и при этом разместится в кузове серийного грузовика. Взрывная камера генератора рассчитана на работу с 2 кг взрывчатки. Есть все основания считать, что комплекс окажется универсальным. С его помощью можно будет испытывать на устойчивость к воздействию тока и электромагнитного поля молнии не только электроэнергетические, но и другие крупногабаритные объекты новой техники: АЭС, телекоммуникационные устройства, ракетные комплексы и т.д.

Хотелось бы закончить статью на мажорной ноте, тем более, что для этого есть основания. Ввод штатного испытательного комплекса позволит объективно оценивать эффективность самых современных защитных средств. Тем не менее, какая-то неудовлетворенность все равно остается. Фактически человек снова идет на поводу у молнии и вынужден мириться с ее своеволием, теряя при этом немало денег. Применение средств молниезащиты приводит к увеличению габаритов и веса объекта, растут затраты дефицитных материалов. Вполне реальны парадоксальные ситуации, когда размеры защитных средств превышают таковые защищаемого конструктивного элемента. В инженерном фольклоре хранится ответ известного авиаконструктора на предложение спроектировать абсолютно надежный самолет: такую работу можно выполнить, если заказчик смирится с единственным недостатком проекта — самолет никогда не оторвется от земли. В молниезащите сегодня происходит нечто подобное. Вместо наступления специалисты держат круговую оборону. Чтобы вырваться из порочного круга, нужно понять механизм формирования траектории молнии и найти средства управления этим процессом за счет слабых внешних воздействий. Задача сложная, но далеко не безнадежная. Сегодня ясно, что молния, движущаяся от облака к земле, никогда не ударяет в наземный объект: от его вершины навстречу приближающейся молнии прорастает искровой канал, так называемый встречный лидер. В зависимости от высоты объекта он вытягивается на десятки метров, иногда на несколько сотен и встречает молнию. Конечно, это «свидание» происходит не всегда — молния может промахнуться.

Но вполне очевидно: чем раньше возникнет встречный лидер, тем дальше он продвинется к молнии и, значит, больше шансов на их встречу. Следовательно, нужно научиться «тормозить» искровые каналы от защищаемых объектов и, напротив, стимулировать от молниеотвода. Основание для оптимизма внушают те весьма слабые внешние электрические поля, в которых формируется молния. В грозовой обстановке поле у земли около 100-200 В/см — примерно такое же, как на поверхности электрического шнура утюга или электробритвы. Раз молния довольствуется такой малостью, значит столь же слабыми могут быть управляющие ею воздействия. Важно только понять, в какой момент и в каком виде они должны быть поданы. Впереди трудная, но интересная исследовательская работа.

Академик Владимир ФОРТОВ, Объединенный институт физики высоких температур РАН, доктор технических наук Эдуард БАЗЕЛЯН, Энергетический институт им. Г.М. Кржижановского.

Как правильно защитить дом от грозового разряда – молнии? Молния – это природный разряд электричества. Если было бы возможно с аккумулировать мощный заряд молнии, это позволило обеспечить целый район города абсолютно бесплатной электроэнергией. Порой, в наш дом, может «прилететь» по внешним проводам, никем не прирученный, и не столь желанный, но столь губительный для нашей домашней электротехники «синий дракон» по имени молния и уничтожить посильно нажитое имущество — электротехнику. Именно поэтому, к защите дома от молнии необходимо относится серьезно и ответственно и не скупится на материальные расходы для установки молниеотвода, а также автоматики защиты.

Молниезащита бывает двух видов: внутренней и внешней защиты. В комплексе, два охранных контура молниезащиты будут обеспечивать сто процентную защиту вашего дома от молнии, которая защитит как электроаппаратуру, так и человеческую жизнь.

Защита от молнии – внешняя защита

К внешней защите относится молниеотвод, который, как правило, устанавливают на самой верхней точке дома, молниеотвод соединяют с проводником, который отводит разряд в землю. Было время, когда молниеотвод соединяли с заземлением контура дома. Как выяснилось, для отвода грозового разряда лучше использовать независимое заземление. Характеристики заземлителя молниеотвода должны быть такими же, как у контура заземления дома. Его также надо углублять в землю с помощью штырей не менее чем на 3 метра.


Для частных домов, молниеприемник часто устанавливают на крыше дома. Молниеприемники бывают:

  • а) тросовой молниеприемник, закрепленный на стойках торцевых частей дома и натянутый вдоль конька, либо используется высокий металлический штырь молниеприемника, который вертикально устанавливается и крепится с помощью растяжек или специального крепления рассчитанного для устойчивости к ветровым нагрузкам.

защита дома от молнии — молниеприемники
  • б) другой вариант, когда на крышу укладывают металлическую сетку из прутьев, сваренную с шагом ячеек 2–5 м, с сечением прутьев 8–10 мм².

Защита о молнии — сетка
  • в) третий вариант молниеотвода, используется, если кровля металлическая, тогда отпадает нужда в применении двух предыдущих конструкций. Требуется только заземлить кровлю с помощью проводника и отвести в землю.

Проводник, по которому грозовая энергия молнии пойдет к заземлителю, лучше использовать стальной, сечением не меньше 16 мм², или медный провод сечением не меньше 10 мм².

Это как раз тот случай, когда кашу маслом не испортить: чем толще будет провод, тем безопаснее. Металлический проводник, как правило, соединяется с молниеприемником сваркой или при помощи болтового соединения в случае медного проводника. Проводник опускается вдоль наружной стены дома, к которому он крепится при помощи специальных хомутов на невозгораемых материалах. Желательно, проводник молниеотвода уложить на глухой стене, вдали от входной двери и окон. Проводник молниеприемника не должен проходить по металлическим элементам (лестничных металлических перил, водопроводных и водосточных труб) и на расстоянии этих конструкций не ближе чем на 30 см.

Защита от молнии — внутренняя защита

ОПН — защита дома от молнии

Внутреннею защиту от молнии обеспечивают специальные модульные устройства, которые устанавливаются в схемах электрощитовых. Даже если молния непосредственно не попадает в наш дом, она может “прискакать” в виде импульсного сверхтока по внешним уличным проводам. Проводник, который принял импульс, может привести к катастрофическим последствиям домашнюю аппаратуру, подключенную к электрической сети. За фатальный исход дорогого оборудования придется платить самим, винить в этом будет некого. Как раз для защиты от таких ситуаций и существуют специальные модульные устройства - ограничители перенапряжения. Внутри щита (ВРУ), можно установить отличающихся по классификации ограничители перенапряжения (ОПН). Эти устройства по внешнему виду напоминают обычные модульные автоматические выключатели (ВА), только без рычага отключения.


модульные ограничители напряжения — защита от молнии

Все, что надо знать про ограничители перенапряжения, - что они устанавливаются между фазой и заземлением или нулевым проводом и заземлением.

Принцип работы ограничителей перенапряжения


Какие ограничители перенапряжения нужно устанавливать для защиты от молнии?


Как видно из классовых назначений ограничителей перенапряжения, погашение импульсного перенапряжения происходит поэтапно. Недостаточно установить ограничитель перенапряжения только класса D и на этом успокоится. Последняя ступень способна погасить остатки, которые проскочили через В и С. Так, в одиночку он неспособен отвести сотни, а то и тысячи ампер. Какой вывод напрашивается из всего сказанного – необходимо устанавливать все три класса ограничителей перенапряжений — В, С, и D.

Активная молниезащита для частного дома

Активная молниезащита отличается от пассивного — своего предшественника, в том, что в него встроено электронное устройство, которое генерирует высоковольтные импульсы на конце молниеприемника. Искусственный лидер на большом расстоянии с помощью высоковольтных импульсов притянет к себе разряд молнии, и отводит ее в землю.

Активная молниезащита широко используется в области гражданского строительства, в частности строительства коттеджей. В наш век придается большое внимание эстетическому облику здания, поэтому, чтобы не испортить вид традиционными молниеприемниками некоторые обладатели домов используют активные молниеприемники. Преимущество объясняется просто: меньшее число молниеприемников и токоотводов - меньшее нарушение эстетики объекта


По итогам майских гроз пришлось провести ревизию сгоревшего оборудования и хотя ущерб был не так велик материально, но выход из строя некоторого оборудования нарушил устоявшийся комфорт проживания в собственном доме. Так я решил обратиться к специалистам в своей области, проконсультироваться и расширить систему защиты.

Исходные данные: дом, 3 фазы (15 кВт на дом), заземление штырем в 3 м длиной, автономная электросистема на базе солнечных батарей

На фото результат короткого замыкания со стороны линии 10 КВ. Защита не отработала на районной подстанции. Так выглядит вводной щит со стороны 0.4КВ. Автомат IEK на 100А не смог разорвать дугу между губками. Далее по линии стоял МАП HYBRID 9кВт 48В . Отделались легким испугом: в инверторе поменяли варистор, после чего МАП ожил, правда, перестал нормально работать порт RS232. То есть серьезная авария на подстанции, которая сожгла автоматический предохранитель на 100 Ампер, отразилась на инверторе только сгоревшим варистором и ошибками на контроллере, а весь прочий функционал устройства сохранился, как и вся техника, подключенная после него – достойная похвалы работа.

А ниже на фото узел учета со стороны 10 КВ

Эта авария случилась не в моем доме, но мне эти фотографии передали специалисты компании МикроАРТ . В свое время я решил переключиться на оборудование российского производителя для своей гибридной солнечно-сетевой электросистемы и описывал эти устройства и .
У меня же был следующий случай: во время грозы молния ударила в мою подстанцию или рядом, в результате чего отработала защита на вводе в дом. Результатом той грозы явилось сгоревшее зарядное устройство аккумуляторов, подключенное к сети в момент грозы, сгоревшее реле автоматики вентиляции (реле питалось от линии, которую поддерживало то самое ЗУ), а инвертор МАП Hybrid 4.5 кВт начал мигать экраном и перестал генерировать. После грозы перезапуск всех систем вернул дом к электроснабжению, инвертор запустился без проблем, а я задумался о серьезной защите домашней электросети.

Немного теории

Во время грозы в обычной квартире или офисном здании должны отработать защиты, установленные стационарной электросетью. В коттеджном поселке, деревне или на дачах защита, как правило, ограничивается вкопанным заземлением на подстанции и предохранителем, отключающим всю сеть от работы. Причем, по правилам подключения, заземление должно быть смонтировано также на каждом втором столбе и отдельно на конечном, где производится подключение абонентского дома. Пройдя по свой деревне и осмотрев более полусотни столбов, я не нашел ни одного заземления, то есть остается полагаться только на себя.

Вторым «убийственным» фактором является наведенное электричество. Во время молнии происходит довольно мощный всплеск ЭМИ, а проводка дома, по сути, является большой антенной. Чем ближе молния, тем больше вероятность скачка напряжения во внутренней сети. С таким явлением постоянно сталкивались и продолжают сталкиваться монтажники домовых локальных сетей, когда свитчи без заземления, во время грозы, сгорают целыми цепочками.

Итак, нам нужно защититься от внешнего импульса, который может прийти с подстанции и от внутреннего скачка, который может случиться при молнии рядом с домом.

Практика

Молниеотвод

Если Ваш дом находится на возвышении, далеко от любых строений и является высшей точкой на местности, то лучше озаботиться молниеотводом. Устройство это надежное, но необходимо четко высчитать площадь покрытия. На эту тему есть масса материалов в сети. Скажу только, что действие молниеотвода распространяется конусом от высшей точки к земле. Для «прикрытия» всего дома надо ставить либо два молниеотвода с металлическим тросом между ними, либо один, но довольно высоко. Если заземление молниеотвода выполнено отдельно от общего заземления, то необходимо применить систему уравнивания потенциалов.

Выдержки из ИНСТРУКЦИИ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ РД 34.21.122-87:
«В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители
электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ. „

“2.5. Для исключения заноса высокого потенциала в защищаемое здание или сооружение но подземным
металлическим коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители защиты от
прямых ударов молнии должны быть по возможности удалены от этих коммуникаций на максимальные расстояния,
допустимые по технологическим требованиям. „

Ввод сети в дом

Опасность ввода высокого напряжения страшна не только в грозу, но и при перехлестывании проводов на столбах или большом перекосе фаз. Обычное дело для деревенских электросетей, когда напряжение по фазам может составлять 180, 200 и 240 В. ГОСТ допускает подачу питания с отклонением напряжения до 10% (если точно, то +10% и -15%) от нормы в 220 в, то есть от 187 до 242 В. Но не вся поставляемая аппаратура может выдержать такие перепады напряжения. Для обычной защиты лучше всего применять стабилизаторы напряжения. Причем есть трехфазные и однофазные стабилизаторы. Чаще всего три однофазных стабилизатора будут работать лучше одного трехфазного, хотя бы потому, что у простейших устройств отслеживается напряжение по одной фазе и изменение (увеличение или снижение) напряжения происходит по всем трем. Упрощенно: при подъеме напряжения со 180 до 220 В, произойдет рост напряжения на другой фазе с 210 до 250 В, что чревато для оборудования. Поэтому отслеживание каждой из фаз будет надежнее. Кроме того, можно выделить несколько типов стабилизаторов:

  • Релейный
  • Симисторный

Первый обладает высокой точностью установки напряжения, поскольку моторчик скользит водилом по обмоткам и задает нужное напряжение. Плюсы: низкая цена, высокая точность выдаваемого напряжения. Минусы: низкая скорость реакции на скачки напряжения, физический износ механики
Второй обладает повышенной скоростью переключения обмоток трансформатора, но так как мощности могут достигать десятка и более кВт, то контакторы реле изнашиваются и рано или поздно могут залипнуть, что приведет к печальным последствиям. Плюсы: доступная цена, достаточная скорость переключения. Минусы: недостаточная надежность ввиду использования механических реле.
Третий тип наиболее интересный, но и наиболее дорогой. Использование мощных ключей позволяет мгновенно реагировать на изменение входного напряжения и переключать обмотки трансформатора. Физического износа, как и залипания контактов попросту нет. Кроме того, переключение происходит при переходе синуса через ноль, поэтому и скачки также исключены. Плюсы: высокая скорость срабатывания, отсутствие физического износа. Минусы: высокая цена.

Для себя я выбрал более дорогой, но и более надежный вариант, стабилизатор с симисторным управлением СН-LCD “Энергия» на 6 кВт . Так как у меня уже стоит инвертор на 4.5 кВт, который в пике может выдавать до 7 кВт, то решено было выбрать стабилизатор с номинальной мощностью 6 кВт и возможностью выдавать в пике до 7.4 кВт.

Об особенностях работы этих стабилизаторов и какие вообще бывают стабилизаторы можно подробно прочитать .
Ну а мне было интересно его разобрать и посмотреть, что там внутри.

Вскрытие стабилизатора показало










Как видно из фото, стабилизатор использует тороидальный трансформатор, который при тех же размерах, что Ш-образный, имеет больший КПД и меньший вес. Сам трансформатор изготовлен в Туле, а стабилизатор разработан и собран в Москве. Таким образом можно смело заявлять о полностью российском производстве, которое сумели организовать и сохранить в компании МикроАРТ.

Итак, я подстраховался от проседания и роста напряжения в диапазоне 125-275 Вольт, но что делать, если будет резкий скачок напряжения, сильно выходящий за эти пределы? Инвертор как-то показал мне по фазе 287 В, после чего ушел в защиту. Но подай на него 380 В и он попросту сгорит, как и стабилизатор. Хотелось защитить дорогое оборудования. Требовался какой-то расцепитель, который при пороговых значениях напряжения отключал бы внешнюю сеть. Лучше уж остаться без сети, чем потом чинить или менять сгоревшее оборудование. Выход был найден - реле контроля сетевого напряжения УЗМ-51M1 .

Этот девайс создан для обеспечения работы одной фазы, при этом можно вручную задавать верхний и нижний пороги напряжения, при которых реле будет срабатывать. Время отключения составляет около 20 мс, что является очень неплохим показателем. При этом, небольшие просадки или некоторое превышение напряжения не вызовут моментального отключения, а запустится таймер отключения. При возврате параметров к норме реле самостоятельно подключит нагрузку к сети. Итак, домашние устройства защищены от перепадов и скачков внешней электросети при помощи реле контроля напряжения и стабилизатора. В случае исчезновения сети начинает работать инвертор. А что делать, если внешняя сеть уже отключена, молния бьет рядом и проводка дома работает, как антенна?

Защита внутренней сети

Будем исходить из того, что все розетки имеют правильную разводку, заземление выполнено должным образом и лишний заряд стекает в землю. Но скачок напряжения во внутренней сети легко губит всю технику, поскольку все защиты стоят для обороны от внешних скачков. А вот от внутренних наводок ничего нет. С этой мыслью я обратился к инженерам МикроАРТ, когда забирал стабилизатор и мне порекомендовали «Устройство защиты от молний и наводок» - УЗИП .

Это своеобразный разрядник, который при появлении критического напряжения между фазой и землей пропускает через себя импульс, отправляя его на заземление. То есть во время грозы, когда молния ударит рядом и напряжение в домашней сети поднимется до нескольких киловольт по фазному проводу относительно земли и превысит определенное значение, этот УЗИП просто пустит весь заряд в землю. Поэтому он ставится перед инвертором, одним концом подключаясь к фазе, а другим к заземлению. Стоит учесть, что разряд может быть существенным, поэтому на сечении заземляющего провода экономить не стоит, иначе сопротивление провода может оказаться критичным и не успеть передать импульс в землю.

Так выполнено подключение к внешней сети и генератору:

Я уже упоминал, что у меня есть автономная система на солнечных батареях. По проводам, идущим от солнечных батарей, также может прийти серьезный импульс, выводя из строя солнечный контроллер, а за ним и инвертор. Поэтому на каждый из проводов от солнечных батарей я также повесил УЗИП.

Защита от генератора

На самый аварийный случай, когда внешней сети нет, солнца не видно, а аккумуляторы уже сели, у всех автономщиков есть резервный вариант - бензо\дизель генератор. Он позволит домашней сети функционировать, самому поработать мощным инструментом, да еще и аккумуляторы подзарядить. Подобную топологию резервирования я описывал в своем материале . Проблема такого подключения заключается в том, что большинство генераторов выдают крайне нестабильное и «шумное» питание. Иной раз инверторы или зарядники просто не могут работать с таким питанием. Для подавления помех есть специальный сетевой фильтр. Можно обойтись стандартным «пилотом», но он рассчитан, как правило, на мощность до 2-3 кВт, а от генератора зачастую потребляется больше. Итак, я нашел еще и ЭМИ (электромагнитный импульс) фильтр: Сетевой фильтр подавления ЭМП .

Он выдерживает потребляемую мощность до 11 кВт, чего вполне достаточно для питания целого дома, если имеется мощный генератор. Он имеет сквозное подключение и отдельный контакт для заземления.

Итоги проведенных работ

Результатом одной грозы и малых потерь явилось переосмысление способов защиты, как от внешних энергетических коллизий, так и от внутренних. Кроме того, увеличилась защищенность всех электроприборов в доме, как от перепадов напряжения, так и от резких скачков и импульсов. Дополнительно повысилась автономность за счет подключения генератора через фильтр, что гарантирует стабильный заряд батарей и нормальную работу инвертора.
В итоге, электросистема поменялась. До:

Так стало ПОСЛЕ установки защиты:

Схема подключения генератора довольно проста. Любой из проводов объединяется с имеющейся землей и нулем, заведенным в дом. Второй провод после этого становится фазой. Важно выбрать такой переключатель, который будет исключать одновременное замыкание фазы генератора и фазы с подстанции.

Первый запуск всей системы выглядел так:

При образовании в любой точке горизонта грозового фронта мощных кучево-дождевых, башнеобразных туч следует внимательно наблюдать за развитием облачности. При этом надо помнить, что ветер не дает правильного представлении о направлении движения грозы. Грозы часто идут против ветра!

Расстояние до приближающейся грозы можно определить, посчитав секунды, разделяющие вспышку молнии и звук первого раската грома:

  • секундная пауза означает, что гроза на расстоянии 300-400 м,
  • трехсекундная - 1 км,
  • четырехсекундная - 1,3 км и т.д.

Гроза относится к одному из самых опасных для человека природных явлений . Мгновенный удар молнии может вызвать паралич, глубокую потерю сознания, остановку дыхания и сердца. При поражении молнией на теле пораженного остаются специфические ожоги в виде красноватых полос и ожогов с пузырями. Чтобы не пострадать от попадания молнии, необходимо знать и соблюдать некоторые правила поведения во время грозы.

Что такое молния

Молния - это электрический разряд высокого напряжения , огромной силы тока, высокой мощности и очень высокой температуры, возникающий в природе. Электрические разряды, возникающие между кучевыми облаками или между облаком и землёй, сопровождаются громом, ливневым дождём, зачастую градом и шквальным ветром. Разновидностей молний существует много. В средней полосе самые распространённые - линейная и шаровая молнии. Они отличаются по внешнему виду, но одинаково опасны для человека.

Что делать во время грозы

Летние грозы - явление обычное, но не каждый знает, как обезопасить себя во время грозы, что делать, чтобы не быть пораженным молнией .

Сотрудники МЧС России по Московской области дают ряд простых советов, что делать во время грозы:

  • Во-первых, во время грозы стоит избегать открытой местности . Молния, как известно, бьет в самую высокую точку, одинокий человек в поле - это и есть та самая точка. Если Вы по какой-то причине остались в поле один на один с грозой, спрячьтесь в любом возможном углублении: канавке, ложбинке или самом низком месте поля, сядьте на корточки и пригните голову, советуют спасатели.
  • Во-вторых, во время грозы избегайте воды , так как она отличный проводник тока. Удар молнии распространяется вокруг водоема в радиусе 100 метров. Нередко она бьет в берега. Поэтому во время грозы необходимо подальше отойти от берега, нельзя купаться и ловить рыбу.
  • Очень опасно во время грозы разговаривать по мобильному телефону . Лучше всего во время грозы мобильники выключать. Были случаи, когда входящий звонок становился причиной попадания молнии.
  • При грозе желательно избавиться от металлических предметов . Часы, цепочки и даже раскрытый над головой зонтик - потенциальные цели удара. Известны случаи удара молнии по находящейся в кармане связке ключей.

Чтобы не ударила молния, если вы в лесу

Молния в лесу практически никогда не бьет в землю, за исключением полян, ибо деревья являются естественными громоотводами, причем вероятность попадания молнии в конкретное дерево прямо пропорциональна его высоте. Поэтому держитесь подальше от высоких деревьев. Самый грамотный вариант - усесться между низкорослыми деревьями с густыми кронами. При этом определите приблизительно высоту выбранных вами деревьев и постарайтесь размещаться от них на расстоянии, не превышающем эту высоту. Допустим, высота деревьев примерно 4-5 метров, соответственно, размещаться между ними надо так, чтобы до каждого из деревьев было не менее 4-5 метров. Это называется «конус защиты». Сидеть лучше в так называемой «позе эмбриона» — спина согнута, голова опущена на согнутые в коленях ноги и предплечья рук, ступни ног соединены вместе.

  1. Что чаще всего молния ударяет в дубы, тополя, вязы.
  2. Реже молния ударяет в ель, сосну.
  3. Совсем редко молния ударяет в березы, клены.

Во время грозы в лесу нельзя: выбирать убежище под высокими деревьями или у деревьев, ранее пораженных грозой, расщепленных (обилие пораженных молнией деревьев свидетельствует, что грунт на данном участке имеет высокую электропроводность, и удар молнии в этот участок местности весьма вероятен), нельзя ставить палатки на открытом месте, сидеть у горящего костра (дым - хороший проводник электричества).

Чтобы не ударила молния, если вы в поле

При первых признаках приближающейся грозы надо: как можно быстрее переместиться в сторону надежного ближайшего укрытия (лес, деревня), удаляясь одновременно от отдельно стоящих деревьев или рощ. Если отдельно стоящее дерево расположено на вашем пути к деревне, не стоит идти туда. Приоритетной задачей является удаление от возможных зон попадания разряда. Отдаляться надо не менее чем на 150-200 м. С началом грозы, если вы так и не добежали до укрытия: необходимо присесть как можно ниже, а когда гроза подойдет совсем близко - лечь на землю. И тихо, смиренно, неподвижно лежать. При этом следует помнить, что песчаная и каменная почвы безопаснее, чем глинистая. И не спешите двигаться с места, когда гроза начнет уходить, - переждите 20-30 минут после того, как ударила последняя молния.

Во время грозы в поле нельзя: перемещаться, в особенности идти, распрямившись; прятаться в стога сена, под одиноко стоящие деревья или островки деревьев, тем более прикасаться к ним руками и прочими частями тела. Человеческая психология такова, что в большом и мощном он склонен видеть защиту. В грозу работает обратный закон: чем ты мельче, тем больше у тебя шансов не попасть под разряд. Поэтому деревья обходим подальше.

Чтобы не ударила молния, если вы у водоема

При приближении грозу немедленно покиньте водоем и уйдите как можно дальше от береговой линии. Человек, находящийся на плавсредстве, при приближении грозы должен немедленно пристать к берегу. Если это невозможно - осушить лодку, переодеться в сухую одежду, если есть, поднять защитный тент, подложить под себя спасательный жилет, сапоги, снаряжение и т.п. электроизолирующие предметы, накрыться полиэтиленом таким образом, чтобы дождевая вода стекала за борт, не внутрь плавсредства, но при этом полиэтилен не должен соприкасаться с водой!

Во время грозы у водоема нельзя: лезть в воду, укрываться в пойменных кустах и под деревьями.

Чтобы не ударила молния, если вы в горах

В горной местности при приближении грозы надо постараться спуститься с возвышенностей - хребтов, холмов, перевалов, вершин и т.п. Опасно находиться возле водотоков (расщелин, желобов и т.д.), так как во время грозы даже мелкие трещины, заполненные водой, становятся проводником для стекания электричества. Лучше всего остановиться возле высокого вертикального отвеса («пальца»). При этом высота отвеса должна быть, по меньшей мере, в 5-6 раз больше высоты человека, соответственно зона безопасности будет равна высоте отвеса, отмеренной в горизонтальной плоскости. Однако ближе чем на 2 м к стене приближаться нельзя. Можно укрываться в естественных нишах-пещерах в склоне, но также не ближе 2 м от стены. Металлические предметы - альпинистские крючья, ледорубы, кастрюли, собрать в рюкзак и спустить на веревке на 20-30 м ниже по склону.

Во время грозы в горах нельзя: прислоняться или прикасаться при передвижении или отдыхе к скалам, отвесным стенам, прятаться под скальными нависаниями.

Чтобы не ударила молния, если вы в машине

Машина достаточно хорошо защищает находящихся внутри людей, поскольку даже при ударе молнии разряд идет по поверхности металла. Поэтому если гроза застала вас в машине, закройте окна, отключите радиоприёмник, сотовый телефон и GPS-навигатор. Не следует дотрагиваться до ручек дверей и других металлических деталей.

Чтобы не ударила молния, если вы на мотоцикле

Велосипед и мотоцикл в отличие от машины от грозы вас не спасут. Необходимо слезть, уложить транспорт и отойти на расстояние примерно 30 м от него.

При нахождении во время грозы в дачном или садовом доме следует:

  • Закрыть двери и окна, исключить сквозняки.
  • Не топить печь, закрыть дымоход, поскольку выходящий из трубы дым обладает высокой электропроводностью и может притянуть к себе электрический разряд.
  • Выключить телевизор, радиоприёмник, электроприборы, отключить антенну.
  • Выключить средства связи: ноутбук, мобильный телефон.
  • Не следует находиться около окна или на чердаке, а также рядом с массивными металлическими предметами.

Если гроза застала на улице:

  • Не находиться на открытой местности, вблизи металлических сооружений, линий электропередач.
  • Не стоит прикасаться ко всему мокрому, железному, электрическому.
  • Снимите с себя все металлические украшения (цепочки, кольца, серьги), уберите в кожаную или полиэтиленовую сумку.
  • Не раскрывать над собой зонтик.
  • Ни в коем случае не искать убежища под большими деревьями.
  • Не желательно находиться у костра.
  • Не подходите к проволочным заборам.
  • Не выходите, чтобы снять белье, сохнущее на веревках, поскольку оно тоже проводит электричество.
  • Не ездить на велосипеде или мотоцикле.
  • Не купаться, отойти подальше от водоёма.
  • Очень опасно во время грозы разговаривать по мобильному телефону, его нужно отключить.
  • Гроза обычно бьёт в самую высокую точку на своём пути. Одинокий человек в поле - это и есть та самая высокая точка. Ещё страшнее оказаться в грозу на одиноком холме! Если Вы по какой-то причине остались в поле один на один с грозой, спрячьтесь в любом возможном углублении: канавке, ложбинке или самом низком месте поля, сядьте на корточки и пригните голову. Лежать на мокрой земле во время грозы не рекомендуется.
  • Никогда не пытайтесь укрыться под одиноко стоящим деревом.
  • Во время грозы не купайтесь, не ловите рыбу, не находитесь рядом с водоёмами.

Как спастись от шаровой молнии

Если в грозу вы находитесь дома или в каком-либо помещении, не стоит находиться рядом с батареями, окнами, электроприборами, антеннами, проводами и металлическими предметами. Надо закрыть окна, двери, дымоходы и вентиляционные отверстия, чтобы избежать сквозняков, которые привлекают шаровые молнии .

Шаровая молния выглядит как свободно плавающий по воздуху горизонтально или хаотично светящийся шар диаметром от нескольких сантиметров до нескольких метров. Шаровая молния может существовать от нескольких секунд до трёх десятков секунд. Она обладает большой разрушительной силой, вызывающей пожары, сильные ожоги и иногда смерть человека или животного. Возникает она непредсказуемо и также неожиданно пропадает. Проникает даже в закрытое помещение через выключатель, розетку, трубу, замочную скважину.

Помните, если вы стали очевидцем такого явления, как шаровая молния, постарайтесь не двигаться и не убегать от нее . Молнии привлекают двигающиеся, высокие, металлические и мокрые объекты. Если шаровая молния влетела в комнату, нужно медленно, затаив дыхание, покинуть комнату. Если это невозможно, нужно стоять, не шевелясь. Через 10-100 секунд она обойдёт вас и исчезнет. Шаровая молния может появиться, не нанеся вреда человеку или помещению, но может взорваться, возникающая при этом воздушная волна способна травмировать человека. Шаровая молния имеет температуру около 5000° С и может вызвать пожар.

Помощь пострадавшему от удара молнии

Для оказания первой помощи человеку, поражённому ударом молнии , его следует немедленно перенести в безопасное место. Прикосновение к пострадавшему не опасно, в его теле заряда не остаётся. Даже если кажется, что поражение смертельно, это может оказаться на самом деле не так.

Если пострадавший от молнии находится без сознания , уложите его на спину и поверните голову в сторону, чтобы язык не запал в дыхательные пути. Необходимо не останавливаясь ни на минуту, делать искусственное дыхание и массаж сердца до приезда медицинской помощи.

Если эти действия помогли, и человек проявляет признаки жизни, до приезда врачей дайте пострадавшему 2-3 таблетки анальгина, и положите на голову мокрую, холодную, свернутую в несколько слоев ткань. Если есть ожоги, их необходимо обильно полить водой, обожжённую одежду следует снять, а затем поражённое место прикрыть чистым перевязочным материалом. При перевозке поражённого в ближайшее лечебное учреждение, его необходимо обязательно уложить на носилки и постоянно контролировать его самочувствие.

При относительно лёгких поражениях от молнии дайте пострадавшему любое обезболивающее (анальгин, темпалгин и др.) и успокаивающее лекарство (настойка валерианы, корвалол и др.)

Фото Анна Фомичева