Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.

Электрический ток являет собой эффект направленного движения электрических зарядов (в газах - ионы и электроны, в металлах - электроны), под воздействием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

Обычно за направление электрического берут направление положительного заряда.

  • мощность тока;
  • напряжение тока;
  • сила тока;
  • сопротивление тока.

Мощность тока.

Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.

Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощ-ность (элек-три-че-ская и ме-ха-ни-че-ская) из-ме-ря-ет-ся в Ват-тах (Вт).

Мощ-ность тока не за-ви-сит от вре-ме-ни про-те-ка-ния элек-три-че-ско-го тока в цепи, а опре-де-ля-ет-ся как про-из-ве-де-ние на-пря-же-ния на силу тока.

Напряжение тока.

Напряжением электрического тока называется величина, которая показывает, какую работу совершило электрическое поле при перемещении заряда от одной точки до другой. Напряжение при этом в различных участках цепи будет отличаться.

К примеру : напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет намного больше, и величина напряжения будет зависеть от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: U=A/q, где

  • U - напряжение,
  • A - работа, совершенная током по перемещению заряда q на некий участок цепи.

Сила тока.

Силой тока называют количество заряженных частиц которые протекают через поперечное сечение проводника.

По определению сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Сила электрического тока измеряется прибором, который называется Амперметром. Величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро - микроампер (мкА), мили - миллиампер (мА). Другие приставки в повседневном обиходе не используются. К примеру: говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в повседневной жизни не используются. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Сопротивление тока.

Электрическим сопротивлением называется физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивление тока (часто обозначается буквой R или r) считается сопротивление тока, в определённых пределах, постоянной величиной для данного проводника. Под электрическим сопротивлением понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.

Условия возникновения электрического тока в проводящей среде:

1) присутствие свободных заряженных частиц;

2) если есть электрическое поле (присутствует разность потенциала между двумя точками проводника).

Виды воздействия электрического тока на проводящий материал.

1) химическое - изменение химического состава проводников (происходит в основном в электролитах);

2) тепловое - нагревается материал, по которому течет ток (в сверхпроводниках этот эффект отсутствует);

3) магнитное - появление магнитного поля (происходит у всех проводников).

Главные характеристики тока.

1. Сила тока обозначатся буквой I - она равна количеству электричества Q, проходящему через проводник за время t.

I=Q/t

Сила тока определяется амперметром.

Напряжение определяется вольтметром.

3. Сопротивление R проводящего материала.

Сопротивление зависит:

а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);

R=pl/S

б) от температуры t°С (или Т): R = R0 (1 + αt),

  • где R0 - сопротивление проводника при 0°С,
  • α - температурный коэффициент сопротивления;

в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.

Таблица характеристик тока.

Соединение

Последовательное

Параллельное

Сохраняющаяся величина

I 1 = I 2 = … = I n I = const

U 1 = U 2 = …U n U = const

Суммируемая величина

напряжение

e=Aст/q

Величина, равная затраченной работе совершаемой сторонними силами по перемещению положительного заряда вдоль всей цепи, включая и источник тока, к заряду, имеет название электродвижущая сила источника тока (ЭДС):

e=Aст/q

Характеристики тока обязательно надо знать при ремонте электрооборудования.

Условия появления тока

Современная наука создала теории, объясняющие природные процессы. В основе многих процессов лежит одна из моделей строения атома, так называемая планетарная модель. В соответствии с этой моделью атом состоит из положительно заряженного ядра и отрицательно заряженного облака из электронов, окружающего ядро. Разные вещества, состоящие из атомов, в большинстве своём стабильны и неизменны по своим свойствам при неизменных условиях окружающей среды. Но в природе существуют процессы, которые могут изменять стабильное состояние веществ и вызывать в этих веществах явление, называемое электрическим током .

Таким основным для природы процессом является трение. Многие знают, что если волосы расчёсывать расчёской изготовленной из некоторых видов пластика, или носить одежду из некоторых видов ткани, возникает эффект прилипания. Волосы притягиваются и прилипают к расчёске, то же самое происходит и с одеждой. Объясняется этот эффект трением, которое нарушает стабильность материала расчёски или ткани. Электронное облако может смещаться относительно ядра или частично разрушаться. И в результате вещество приобретает электрический заряд, знак которого определяется строением этого вещества. Электрический заряд, возникающий в результате трения, называют электростатическим.

Получается пара из заряженных веществ. Каждое из веществ имеет определённый электрический потенциал. На пространство между двумя заряженными веществами действует электрическое, в данном случае электростатическое поле. Эффективность электростатического поля зависит от величин потенциалов и определяется как разность потенциалов или напряжение.

  • Когда возникает напряжение, в пространстве между потенциалами появляется направленное движение заряженных частиц веществ – электрический ток.

Где течёт электрический ток?

При этом потенциалы будут уменьшаться, если трение прекратится. И, в конце концов, потенциалы исчезнут, а вещества вновь обретут стабильность.

Но если процесс формирования потенциалов и напряжения будет продолжаться в сторону их увеличения, ток также будет увеличиваться соответственно свойствам веществ, заполняющих пространство между потенциалами. Наиболее наглядной демонстрацией такого процесса является молния. Трение восходящего и нисходящего потоков воздуха друг о друга приводит к появлению огромного напряжения. В результате один потенциал формируется восходящими потоками в небе, а другой нисходящими потоками в земле. И, в конце концов, из-за свойств воздуха возникает электроток в виде молнии.

  • Первой причиной появления электрического тока является напряжение.
  • Второй причиной появления электротока является пространство, в котором действует напряжение – его размеры и чем оно заполнено.

Напряжение появляется не только от трения. Другие физические и химические процессы, которые нарушают уравновешенность атомов вещества, так же приводят к появлению напряжения. Напряжение возникает только как результат взаимодействия либо

  • одного вещества с другим веществом;
  • одного или нескольких веществ с полем или излучением.

Напряжение может появиться от:

  • химической реакции, которая происходит в веществе, как например, во всех батареях и аккумуляторах, а также во всех живых существах;
  • электромагнитного излучения, как например, в солнечных батареях и тепловых электрогенераторах;
  • электромагнитного поля, как например, во всех динамо-машинах.

Электроток имеет природу соответствующую веществу, в котором он течёт. Поэтому различается:

  • в металлах;
  • в жидкостях и газах;


  • в полупроводниках

В металлах электроток состоит только из электронов, в жидкостях и газах – из ионов, в полупроводниках – из электронов и «дырок».

Постоянный и переменный ток

Напряжение относительно своих потенциалов, знаки которых остаются неизменными, может изменяться только по величине.

  • При этом появляется постоянный или импульсный электрический ток.

Электроток зависит от длительности этого изменения и свойств пространства, заполненного веществом между потенциалами.

  • Но если знаки потенциалов изменяются и это приводит к изменению направления тока, он называется переменным , как и напряжение, его определяющее.

Жизнь и электрический ток

Для количественных и качественных оценок электрического тока в современной науке и технике используются определённые законы и величины. Основными законами являются:

  • закон Кулона;
  • закон Ома.

Шарль Кулон в 80-х годах 18 века определил появление напряжения, а Георг Ом в 20-х годах 19 века определил появление электротока.

В природе и человеческой цивилизации он используется в основном как переносчик энергии и информации, а тема его изучения и использования так же необъятна, как и сама жизнь. Например, исследования показали, что все живые организмы живут потому, что мышцы сердца сокращаются от воздействия импульсов электротока, вырабатываемого в организме. Все прочие мышцы работают аналогично. Клетка при делении использует информацию на основе электротока сверх высоких частот. Перечень подобных фактов с уточнениями можно продолжить в объёме книги.

Уже много сделано открытий, связанных с электрическим током, и ещё больше предстоит сделать. Поэтому, с появлением новых инструментов для исследований появляются новые законы, материалы и прочие результаты для практического использования данного явления.

Что называют силой тока? Такой вопрос не раз и не два возникал у нас в процессе обсуждения различных вопросов. Поэтому мы решили разобраться с ним более подробно, и постараемся сделать это максимально доступным языком без огромного количества формул и непонятных терминов.

Итак, что называется электрическим током? Это направленный поток заряженных частиц. Но что это за частицы, с чего это вдруг они двигаются, и куда? Это все не очень понятно. Поэтому давайте разберемся в этом вопросе подробнее.

  • Начнем с вопроса про заряженные частицы, которые, по сути, являются носителями электрического тока . В разных веществах они разные. Например, что представляет собой электрический ток в металлах? Это электроны. В газах — электроны и ионы; в полупроводниках – дырки; а в электролитах — это катионы и анионы.

  • Эти частицы имеют определенный заряд. Он может быть положительным или отрицательным. Определение положительного и отрицательного заряда дано условно. Частицы, имеющие одинаковый заряд, отталкиваются, а разноименный — притягиваются.

  • Исходя из этого, получается логичным, что движение будет происходить от положительного полюса к отрицательному. И чем большее количество заряженных частиц имеется на одном заряженном полюсе, тем большее их количество будет перемещаться к полюсу с другим знаком.
  • Но все это глубокая теория, поэтому давайте возьмем конкретный пример. Допустим, у нас имеется розетка, к которой не подключено ни одного прибора. Есть ли там ток?
  • Для ответа на этот вопрос нам необходимо знать, что такое напряжение и ток. Дабы это было понятнее, давайте разберем это на примере трубы с водой. Если говорить упрощенно, то труба - это наш провод. Сечение этой трубы - это напряжение электрической сети, а скорость потока — это и есть наш электрический ток.
  • Возвращаемся к нашей розетке. Если проводить аналогию с трубой, то розетка без подключенных к ней электроприборов, это труба, закрытая вентилем. То есть электрического тока там нет.

  • Но зато там есть напряжение. И если в трубе, для того чтоб появился поток, необходимо открыть вентиль, то чтобы создать электрический ток в проводнике, надо подключить нагрузку. Сделать это можно путем включения вилки в розетку.
  • Конечно, это весьма упрощенное представление вопроса, и некоторые профессионалы будут меня хаять и указывать на неточности. Но оно дает представление о том, что называют электрическим током.

Постоянный и переменный ток

Следующим вопросом, в котором мы предлагаем разобраться – это: что такое переменный ток и постоянный ток. Ведь многие не совсем правильно понимают эти понятия.

Постоянным называется ток, который в течение времени не изменяет своей величине и направлению. Достаточно часто к постоянному еще относят пульсирующий ток, но давайте обо всем по порядку.

  • Постоянный ток характеризуется тем, что одинаковое количество электрических зарядов постоянно сменяет друг друга в одном направлении. Направление — это от одного полюса, к другому.
  • Получается, что проводник всегда имеет либо положительный, либо отрицательный заряд. И в течение времени это неизменно.

Обратите внимание! При определении направления постоянного тока, могут быть несогласности. Если ток образуется движением положительно заряженных частиц, то его направление соответствует движению частиц. Если же ток образован движением отрицательно заряженных частиц, то его направление принято считать противоположным движению частиц.

  • Но под понятие, что такое постоянный ток достаточно часто относят и так называемый пульсирующий ток. От постоянного он отличается только тем, что его значение в течение времени изменяется, но при этом он не меняет своего знака.
  • Допустим, мы имеем ток в 5А. Для постоянного тока эта величина будет неизменной в течении всего периода времени. Для пульсирующего тока, в один отрезок времени она будет 5, в другой 4, а в третий 4,5. Но при этом он ни в коем случае не снижается ниже нуля, и не меняет своего знака.

  • Такой пульсирующий ток очень распространен при преобразовании переменного тока в постоянный. Именно такой пульсирующий ток выдает ваш инвертор или диодный мост в электронике.
  • Одним из главных преимуществ постоянного тока является то, что его можно накапливать. Сделать это можно своими руками, при помощи аккумуляторных батарей или конденсаторов.

Переменный ток

Чтобы понять, что такое переменный ток, нам необходимо представить себе синусоиду. Именно эта плоская кривая лучше всего характеризует изменение постоянного тока, и является стандартом.

Как и синусоида, переменный ток с постоянной частотой меняет свою полярность. В один период времени он положительный, а в другой период времени он отрицательный.

Поэтому, непосредственно в проводнике передвижения, носителей заряда, как такового, нет. Дабы понять это, представьте себе волну, набегающую на берег. Она движется в одну сторону, а затем — в обратную. В итоге, вода вроде движется, но остается на месте.

Исходя из этого, для переменного тока очень важным фактором становится его скорость изменения полярности. Этот фактор называют частотой.

Чем выше эта частота, тем чаще за секунду меняется полярность переменного тока. В нашей стране для этого значения есть стандарт – он равен 50Гц.

То есть, переменный ток меняет свое значение от крайнего положительного, до крайнего отрицательного 50 раз в секунду.

Но существует не только переменный ток частотой в 50Гц. Многое оборудование работает на переменном токе отличных частот.

Ведь за счет изменения частоты переменного тока, можно изменять скорость вращения двигателей.

Можно так же получать более высокие показатели обработки данных – как например в чипсетах ваших компьютеров, и многое другое.

Обратите внимание! Наглядно увидеть, что такое переменный и постоянный ток, можно на примере обычной лампочки. Особенно хорошо это видно на некачественных диодных лампах, но присмотревшись, можно увидеть и на обычной лампе накаливания. При работе на постоянном токе они горят ровным светом, а при работе на переменном токе едва заметно мерцают.

Что такое мощность и плотность тока?

Ну вот, мы выяснили, что такое ток постоянный, а что такое переменный. Но у вас наверняка осталось еще масса вопросов. Их-то мы и постараемся рассмотреть в этом разделе нашей статьи.

Из этого видео Вы подробнее сможете узнать о том, что же такое мощность.

  • И первым из этих вопросов будет: что такое напряжение электрического тока? Напряжением называется разность потенциалов между двумя точками.

  • Сразу возникает вопрос, а что такое потенциал? Сейчас меня вновь будут хаять профессионалы, но скажем так: это избыток заряженных частиц. То есть, имеется одна точка, в которой избыток заряженных частиц — и есть вторая точка, где этих заряженных частиц или больше, или меньше. Вот эта разница и называется напряжением. Измеряется она в вольтах (В).

  • В качестве примера возьмем обычную розетку. Все вы наверняка знаете, что ее напряжение составляет 220В. В розетке у нас имеется два провода, и напряжение в 220В обозначает, что потенциал одного провода больше чем потенциал второго провода как раз на эти 220В.
  • Понимание понятия напряжения нам необходимо для того, чтоб понять, что такое мощность электрического тока. Хотя с профессиональной точки зрения, это высказывание не совсем верное. Электрический ток не обладает мощностью, но является ее производной.

  • Дабы понять этот момент, давайте вновь вернемся к нашей аналогии с водяной трубой. Как вы помните сечение этой трубы - это напряжение, а скорость потока в трубе - это ток. Так вот: мощность — это то количество воды, которое протекает через эту трубу.
  • Логично предположить, что при равных сечениях, то есть напряжениях — чем сильнее поток, то есть электрический ток, тем больший поток воды переместиться через трубу. Соответственно, тем большая мощность передастся потребителю.
  • Но если в аналогии с водой мы через трубу определенного сечения можем передать строго определенное количество воды, так как вода не сжимается, то с электрическим током все не так. Через любой проводник мы теоретически можем передать любой ток. Но практически, проводник небольшого сечения при высокой плотности тока просто перегорит.
  • В связи с этим, нам необходимо разобраться с тем, что такое плотность тока. Грубо говоря — это то количество электронов, которое перемещается через определенное сечение проводника за единицу времени.
  • Это число должно быть оптимальным. Ведь если мы возьмем проводник большого сечения, и будем передавать через него небольшой ток, то цена такой электроустановки будет велика. В то же время, если мы возьмем проводник небольшого сечения, то из-за высокой плотности тока он будет перегреваться и быстро перегорит.
  • В связи с этим, в ПУЭ есть соответствующий раздел, который позволяет выбрать проводники исходя из экономической плотности тока.

  • Но вернемся к понятию, что такое мощность тока? Как мы поняли по нашей аналогии, при одинаковом сечении трубы передаваемая мощность зависит только от силы тока. Но если сечение нашей трубы увеличить, то есть увеличить напряжение, в этом случае, при одинаковых значениях скорости потока, будут передаваться совершенно разные объемы воды. То же самое и в электрике.
  • Чем выше напряжение, тем меньший ток необходим для передачи одинаковой мощности. Именно поэтому, для передачи на большие расстояния больших мощностей используют высоковольтные линии электропередач.

Ведь линия сечением провода в 120 мм 2 на напряжение в 330кВ, способна передать в разы большую мощность в сравнении с линией такого же сечения, но напряжением в 35кВ. Хотя то, что называется силой тока, в них будет одинаковой.

Способы передачи электрического тока

Что такое ток и напряжение мы разобрались. Пришла пора разобраться со способами распределения электрического тока. Это позволит в дальнейшем более уверено чувствовать себя в общении с электроприборами.

Как мы уже говорили, ток может быть переменным и постоянным. В промышленности, и у вас в розетках используется переменный ток. Он более распространен, так как его легче передавать по проводам. Дело в том, что изменять напряжение постоянного тока достаточно сложно и дорогостояще, а изменять напряжение переменного тока можно при помощи обыкновенных трансформаторов.

Обратите внимание! Ни один трансформатор переменного тока не будет работать на постоянном токе. Так как свойства, которые он использует, присущи только переменному току.

  • Но это совсем не обозначает, что постоянный ток нигде не используется. Он обладает другим полезным свойством, которое не присуще переменному. Его можно накапливать и хранить.
  • В связи с этим, постоянный ток используют во всех портативных электроприборах, в железнодорожном транспорте, а также на некоторых промышленных объектах где необходимо сохранить работоспособность даже после полного прекращения электроснабжения.

  • Самым распространенным способом хранения электрической энергии, являются аккумуляторные батареи. Они обладают специальными химическими свойствами, позволяющими накапливать, а затем при необходимости отдавать постоянный ток.
  • Каждый аккумулятор обладает строго ограниченным объемом накапливаемой энергии. Ее называют емкостью батареи, и отчасти она определяется пусковым током аккумулятора.
  • Что такое пусковой ток аккумулятора? Это то количество энергии, которое аккумулятор способен отдать в самый первоначальный момент подключения нагрузки. Дело в том, что в зависимости от физико-химических свойств, аккумуляторы отличаются по способу отдачи накопленной энергии.

  • Одни могут отдать сразу и много. Из-за этого они, понятное дело, быстро разрядятся. А вторые отдают долго, но по чуть-чуть. Кроме того, важным аспектом аккумулятора является возможность поддержания напряжения.
  • Дело в том, что как говорит инструкция, у одних аккумуляторов по мере отдачи емкости, плавно снижается и их напряжение. А другие аккумуляторы способны отдать практически всю емкость с одинаковым напряжением. Исходя из этих основных свойств, и выбирают эти хранилища для электроэнергии.
  • Для передачи постоянного тока, во всех случаях используется два провода. Это положительная и отрицательная жила. Красного и синего цвета.

Переменный ток

А вот с переменным током все намного сложнее. Он может передаваться по одному, двум, трем или четырем проводам. Чтоб объяснить это, нам необходимо разобраться с вопросом: что такое трехфазный ток?

  • Переменный ток у нас вырабатывается генератором. Обычно почти все их них имеют трёхфазную структуру. Это значит, что генератор имеет три вывода и в каждый из этих выводов выдается электрический ток, отличающийся от предыдущих на угол в 120⁰.
  • Дабы это понять, давайте вспомним нашу синусоиду, которая является образцом для описания переменного тока, и согласно законам которой он изменяется. Возьмем три фазы – «А», «В» и «С», и возьмем определенную точку во времени. В этой точке синусоида фазы «А» находится в нулевой точке, синусоида фазы «В» находится в крайней положительной точке, а синусоида фазы «С» — в крайней отрицательной точке.
  • Каждую последующую единицу времени переменный ток в этих фазах будет изменяться, но синхронно. То есть, через определенное время, в фазе «А» будет отрицательный максимум. В фазе «В» будет ноль, а в фазе «С» — положительный максимум. А еще через некоторое время, они вновь сменятся.

  • В итоге получается, что каждая из этих фаз имеет собственный потенциал, отличный от потенциала соседней фазы. Поэтому между ними обязательно должно быть что-то, что не проводит электрический ток.
  • Такая разность потенциалов между двумя фазами называется линейным напряжением. Кроме того, они имеют разность потенциалов относительно земли – это напряжение называется фазным.
  • И вот, если линейное напряжение между этими фазами составляет 380В, то фазное напряжение равно 220В. Оно отличается на значение в √3. Это правило действует всегда и для любых напряжений.

  • Исходя из этого, если нам необходимо напряжение в 220В, то можно взять один фазный провод, и провод, жестко подключенный к земле. И у нас получится однофазная сеть 220В. Если нам необходима сеть 380В, то мы можем взять только 2 любые фазы, и подключить какой-то нагревательный прибор как на видео.

Но в большинстве случаев, используются все три фазы. Все мощные потребители подключаются именно к трехфазной сети.

Вывод

Что такое индукционный ток, емкостной ток, пусковой ток, ток холостого хода, токи обратной последовательности, блуждающие токи и многое другое, мы просто не можем рассмотреть в рамках одной статьи.

Ведь вопрос электрического тока достаточно объемен, и для его рассмотрения создана целая наука электротехника. Но мы очень надеемся, что смогли объяснить доступным языком основные аспекты данного вопроса, и теперь электрический ток не будет для вас чем-то страшным и непонятным.

Электрический ток


К атегория:

Крановщикам и стропальщикам

Электрический ток


Что называется электрическим током?

Упорядоченное (направленное) движение заряженных частиц называется электрическим током. Причем электрический ток, сила которого со временем не меняется, называется постоянным. Если же направление движения тока меняется и изменения. по величине и направлению повторяются в одной и той же последовательности, то такой ток называется переменным.

Что вызывает и поддерживает упорядоченное движение заряженных частиц?

Вызывает и поддерживает упорядоченное движение заряженных частиц электрическое поле. Имеет ли электрический ток определенное направление?
Имеет. За направление электрического тока принимают движение положительно заряженных частиц.

Можно ли непосредственно наблюдать движение заряженных частиц в проводнике?

Нет. Но о наличии электрического тока можно судить по тем действиям и явлениям, которыми он сопровождается. Например, проводник, по которому движутся заряженные частицы, нагревается, а в пространстве, окружающем проводник, образуется магнитное поле и магнитная стрелка вблизи проводника с электрическим током поворачивается. Кроме того, ток, проходящий через газы, вызывает их свечение, а проходя через растворы солей, щелочей и кислот, разлагает их на соетавнйе части.

Чем определяется сила электрического тока?

Сила электрического тока определяется количеством электричества, проходящим через поперечное сечение проводника в единицу времени.
Чтобы определить силу тока в цепи, надо количество протекающего электричества разделить на время, за которое оно протекло.

Что принято за единицу силы тока?

За единицу силы тока принята сила неизменяющегося тока, который, проходя по двум параллельны прямолинейным проводникам бесконечной длины ни тожно малого сечения, расположенным на рассто нии 1 м один от другого в вакууме, вызвал бы межд этими проводниками силу, равную 2 Ньютона н каждый метр. Эту единицу назвали Ампером в чест французского ученого Ампера.

Что принято за единицу количества электричества?

За единицу количества электричества принят Кулон (Ку), который проходит в одну секунду при силе тока в 1 Ампер (А).

Какими приборами измеряют силу электрического тока?

Силу электрического тока измеряют приборами, называемыми амперметрами. Шкалу амперметра градуируют в амперах и долях ампера по показаниям точных образцовых приборов. Силу тока отсчитывают по показаниям стрелки, которая перемещается вдоль шкалы от нулевого деления. Амперметр в электрическую цепь включают последовательно, с помощью двух клемм или зажимов, имеющихся на приборе. Что такое напряжение электрического тока?
Напряжение электрического тока есть разность потенциалов между двумя точками электрического поля. Оно равно работе, совершаемой-силами электрического поля при перемещении положительного заряда, равного единице, из одной точки поля в другую.

Основной единицей измерения напряжения является Вольт (В).

Каким прибором измеряют напряжение электрического тока?

Напряжение электрического тока измеряют прибо; ром, который называется вольтметром. В цепь электрического тока вольтметр включают параллельно. Сформулируйте закон Ома на участке цепи.

Что такое сопротивление проводника?

Сопротивление проводника есть физическая величина, характеризующая свойства проводника. Единицей сопротивления является Ом. Причем сопротивление в 1 Ом имеет провод, в котором устанавливается ток 1 А при напряжении на его концах 1 В.

Зависит ли сопротивление в проводниках от величины протекающего по ним электрического тока?

Сопротивление однородного металлического проводника определенной длины и сечения не зависит от величины протекающего по нему тока.

От чего зависит сопротивление в проводниках электрического тока?

Сопротивление в проводниках электрического тока зависит от длины проводника, площади его поперечного сечения и рода материала проводника (удельного сопротивления материала).

Причем сопротивление прямо пропорционально длине проводника, обратно пропорционально площади поперечного сечения и зависит, как было сказано выше, от материала проводника.

Зависит ли сопротивление в проводниках от температуры?

Да, зависит. Повышение температуры металлического проводника вызывает увеличение скорости теплового движения частиц. Это приводит к увеличению числа столкновений свободных электронов и, следовательно, к уменьшению времени свободного пробега, вследствие чего уменьшается удельная проводимость и увеличивается удельное сопротивление материала.

Температурный коэффициент сопротивления чистых металлов равен приблизительно 0,004 °С, что означает увеличение их сопротивления на 4% при повышении температуры на 10 °С.

При повышении температуры в электролита угле время свободного пробега тоже уменьшается, при этом увеличивается концентрация носителей з дов, вследствие чего удельное сопротивление их повышении температуры уменьшается.

Сформулируйте закон Ома для замкнутой цепи.

Сила тока в замкнутой цепи равна отноше электродвижущей силы цепи к ее полному сопроти нию.

Эта формула показывает, что сила тока зависит трех величин: электродвижущей силы Е, внешнег сопротивления R и внутреннего сопротивления г Внутреннее сопротивление не оказывает заметног влияния на силу тока, если оно мало по сравнению внешним сопротивлением. При этом напряже ние на зажимах источника тока приблизительно равн электродвижущей силе (ЭДС).

Что представляет собой электродвижущая сила (ЭДС)?

Электродвижущая сила представляет собой отношение работы сторонних сил по перемещению заряда вдоль цепи к заряду. Как и разность потенциалов, электродвижущую силу измеряют в вольтах.

Какие силы называются сторонними силами?

Любые силы, действующие на электрически заряженные частицы, за исключением потенциальных сил электростатического происхождения (т. е. кулонов- ских), называются сторонними силами. Именно за счет работы этих сил заряженные частицы приобретают энергию и отдают ее затем при движении в проводниках электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри источника тока, генератора, аккумулятора и т. д.

В результате на клеммах источника тока появляются заряды противоположного знака, а между клеммами-определенная разность потенциалов. Далее при замыкании цепи начинает действовать образование поверхностных зарядов, создающих электрическое поле по всей цепи, которое появляется в результате того, что при замыкании цепи почти сразу же на всей поверхности проводника возникает поверхностный заряд. Внутри источника заряды движутся под действием сторонних сил против сил электростатического поля (положительные от минуса, к плюсу), а по всей остальной цепи их приводит в движение электрическое поле.

Рис. 1. Электрическая цепь: 1- источник, электроэнергии (аккумулятор); 2 - амперметр; 3 - преемник энергии (лай па накаливания); 4 - электрические провода; 5 - однополюсные руСидьник; 6 - плавкие предохранители

В настоящей статье показано, что в современной физике представление об электрическом токе мифологизировано и не имеет доказательств его современной интерпретации.

С позиций эфиродинамики обосновывается представление электрического тока как потока фотонного газа и условия его существования.

Введение. В истории науки XIX век назвали веком электричества. Удивительный XIX век, заложивший основы научно-технической революции, так изменившей мир, начался с гальванического элемента — первой батарейки, химического источника тока (вольтова столба) и открытия электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в. дали толчок проникновению электричества во все сферы жизнедеятельности человека. Современная жизнь немыслима без радио и телевидения, телефона, смартфона и компьютера, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.

Однако, широкое использование электричества с первых дней открытия электрического тока находится в глубоком противоречии его теоретическому обоснованию. Ни физика XIX в., ни современная не могут ответить на вопрос: что такое электрический ток? Например, в нижеприведенном утверждении из “Британской энциклопедии” :

“Вопрос: “Что такое электричество?”, как и вопрос: “Что такое материя?”, лежит за пределами сферы физики и принадлежит сфере метафизики”.

Первые, получившие широкую известность, опыты с электрическим током были проведены итальянским физиком Гальвани в конце XVIII в. Другой итальянский физик Вольта создал первое устройство, способное давать длительный электрический ток, – гальванический элемент. Вольта показал, что соприкосновение разнородных металлов приводит их в электрическое состояние и что от присоединения к ним жидкости, проводящей электричество, образуется непосредственное течение электричества. Ток, получающийся в названном случае, называется гальваническим током и само явление гальванизмом. При этом, ток в представлении Вольта это движение электрических жидкостей — флюидов.

Существенный сдвиг в понимании сущности электрического тока был сделан

М. Фарадеем. Им было доказана тождественность отдельных видов электричества, происходящих от различных источников. Наиболее важными работами стали эксперименты по электролизу . Открытие было воспринято как одно из доказательств того что движущееся электричество фактически идентично электричеству, обусловленному трением, т. е. статическому электричеству. Его серия остроумных экспериментов по электролизу послужила убедительным подтверждением идеи, суть которой сводится к следующему: если вещество по своей природе имеет атомную структуру, то в процессе электролиза каждый атом получает определенное количество электричества.

В 1874 году ирландский физик Дж. Стоней (Стони) выступил в Белфасте с докладом, в котором использовал законы электролиза Фарадея как основу для атомарной теории электричества. По величине полного заряда, прошедшего через электролит, и довольно грубой оценке числа выделившихся на катоде атомов водорода Стоней получил для элементарного заряда число порядка 10 -20 Кл (в современных единицах). Этот доклад не был полностью опубликован вплоть до 1881 года, когда немецкий ученый

Г. Гельмгольц в одной из лекций в Лондоне отметил, что если принять гипотезу атомной структуры элементов, нельзя не прийти к выводу, что электричество также разделяется на элементарные порции или «атомы электричества». Этот вывод Гельмгольца, по существу, вытекал из результатов Фарадея по электролизу и напоминал высказывание самого Фарадея. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории.

В 1891 году Стоней, который поддерживал идею, что законы электролиза Фарадея означают существование естественной единицы заряда, ввел термин – «электрон» .

Однако, вскоре термин электрон, введенный Стонеем, теряет свою первоначальную сущность. В 1892 году Х. Лоренц формирует собственную теорию электронов. По его утверждению электричество возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов.

В конце XIX в. начала развиваться электронная теория проводимости. Начала теории дал в 1900 г. немецкий физик Пауль Друде. Теория Друде вошла в учебные курсы физики под именем классической теории электропроводимости металлов. В этой теории электроны уподобляются атомам идеального газа, заполняющего кристаллическую решетку металла, а электрический ток представляется как поток этого электронного газа.

После представления модели атома Резерфорда, серии измерений величины элементарного заряда в 20-х годах ХХ ст. в физике окончательно сформировалось представление об электрическом токе, как потоке свободных электронов, структурных элементов атома вещества.

Однако, модель свободных электронов оказалась несостоятельной при объяснении сущности электрического тока в жидких электролитах, газах и полупроводниках. Для поддержки существующей теории электрического тока были введены новые носители электрического заряда – ионы и дырки.

На основании выше изложенного, в современной физике сформировалось окончательное по современным меркам понятие : электрический ток это направленное движение носителей электрических зарядов (электронов, ионов, дырок и т. п.).

За направление электрического тока принимают направление движения положительных зарядов; если ток создаётся отрицательно заряженными частицами (напр., электронами), то направление тока считают противоположным движению частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий: — наличие в среде свободных электрических зарядов; — создание в среде электрического поля.

Однако, данное представление электрического тока оказалось несостоятельным при описании явления сверхпроводимости. Кроме того, как выяснилось, существует много противоречий в указанном представлении электрического тока при описании функционирования практически всех типов электронных приборов. Необходимость интерпретации понятия электрический ток в разных условиях и в разных типах электронных приборах с одной стороны, а также непонимание сущности электрического тока с другой, заставило современную физику сделать из электрона – носителя электрического заряда, “фигаро” (“свободный”, “быстрый”, “выбитый”, “испущенный ”, “тормозной ”, “релятивистский”, “фото”, “термо” и т. п.), что окончательно завело вопрос “что такое электрический ток?” в тупик.

Значимость теоретического представления электрического тока в современных условиях значительно выросла не только из-за широкого применения электричества в жизнедеятельности человека, но и из-за высокой стоимости и технической целесообразности, например, научных мегапроектов , реализуемых всеми развитыми странами мира, в которых понятие электрического тока играет существенную роль.

Эфиродинамическая концепция представления электрического тока. Из выше приведенного определения следует, что электрический ток это направленное движение носителей электрических зарядов . Очевидно, что вскрытие физической сущности электрического тока находится в решении проблемы физической сущности электрического заряда и того, что является носителем этого заряда.

Проблема физической сущности электрического заряда это не решенная проблема, как классической физикой, так и современной квантовой на протяжении всей истории развития электричества. Решение этой проблемы оказалось возможным только с использованием методологии эфиродинамики , новой концепции физики XXI в..

Согласно эфиродинамическому определению : электрический заряд это мера движения потока эфира… . Электрический заряд это свойство присущее всем элементарным частицам и только. Электрический заряд это величина знакоопределенная, т. е. всегда положительная.

Из указанной физической сущности электрического заряда следует некорректность выше представленного определения электрического тока в части того, что ионы, дырки и т. п. не могут быть причиной электрического тока в связи с тем, что не являются носителями электрического заряда, так как не являются элементами организационного уровня физической материи – элементарные частицы (согласно определению).

Электроны, как элементарные частицы имеют электрический заряд, однако, согласно определению : являются одной из основных структурных единиц вещества, образуют электронные оболочки атомов , строение которых определяет большинство оптических, электрических, магнитных, механических и химических свойств вещества, не могут быть подвижными (свободными) носителями электрического заряда. Свободный электрон это миф, созданный современной физикой для интерпретации понятия электрический ток, не имеющий ни одного практического или теоретического доказательства. Очевидно, что, как только “свободный” электрон покинет атом вещества, образуя электрический ток, непременно должны произойти изменения физико-химических свойств этого вещества (согласно определению), чего в природе не наблюдается. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке : “прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их.” В настоящее время, зависимость физико-химических свойств вещества от наличия того или иного электрона в атоме вещества хорошо изучена и подтверждена экспериментально, например, в работе .

Также существует ссылка на опыты , выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси, но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси. В современной физике эти опыты служат непосредственным подтверждением того, что переносчиками электричества в металле следует считать свободные электроны.

Для того, чтобы понять некорректность этих опытов, достаточно рассмотреть схему и методику опыта , в котором в качестве проводника использовалась катушка индуктивности, которая раскручивалась вокруг своей оси и резко останавливалась. Катушка с помощью скользящих контактов была подключена к гальванометру , который регистрировал возникновение инерционной ЭДС. Фактически можно сказать, что в данном опыте роль сторонних сил, создающих ЭДС, играла сила инерции, т. е. если в металле есть свободные носители заряда, обладающие массой, то они должны подчиняться закону инерции . Утверждение “они должны подчиняться закону инерции ошибочно в том плане, что согласно уровневому подходу в организации физической материи , электроны, как элементы уровня “элементарные частицы“ подчиняются только законам электро- и газодинамики, т. е. законы механики (Ньютона) к ним не применимы.

Для убедительности этого предположения рассмотрим известную задачу 3.1: вычислить отношение электростатической (Fэ) и гравитационной (Fгр) сил взаимодействия между двумя электронами, между двумя протонами.

Решение: для электронов Fэ / Fгр = 4·10 42 , для протонов Fэ / Fгр = 1,24·10 36 , т.е. влияние гравитационных сил настолько мало, что принимать их во внимание не приходится. Данное утверждение справедливо и для сил инерции.

Это значит, что выражение для ЭДС (предложенное Р. Ч. Толменом и Т. Д. Стюартом), исходя из ее определения через сторонние силы F стор , действующие на заряды внутри проводника, подвергшегося торможению:

ε = 1/e ∫F стор ∙dl,

некорректно в своей постановке, ввиду того, что F стор → 0.

Тем не менее, в результате опыта наблюдалось кратковременное отклонение стрелки гальванометра, которое требует объяснения. Для понимания этого процесса следует обратить внимание на сам гальванометр, в качестве которого был использован так называемый баллистический гальванометр . Его инструкция по использованию имеет такой вариант.

Баллистический гальванометр может использоваться в качестве веберметра (т.е. измерять магнитный поток через замкнутый проводник, например катушку), для этого к контактам баллистического гальванометра подключают индуктивную катушку , которую помещают в магнитное поле . Если после этого резко убрать катушку из магнитного поля или повернуть так чтобы ось катушки была перпендикулярна силовым линиям поля, то можно измерить заряд прошедший через катушку, вследствие электромагнитной индукции , т.к. изменение магнитного потока пропорционально прошедшему заряду, проградуировав соответствующим образом гальванометр, можно определять изменение потока в веберах .

Из выше изложенного очевидно, что использование баллистического гальванометра в качестве веберметра соответствует методике опыта Р. Ч. Толмена и Т. Д. Стюарта по наблюдению инерционного тока в металлах. Открытым остается вопрос об источнике магнитного поля, которым, например, могло быть магнитное поле Земли. Влияние внешнего магнитного поля Р. Ч. Толменом и Т. Д. Стюартом во внимание не принималось и не исследовалось, что и привело к мифологизации результатов опыта.

Сущность электрического тока. Из выше изложенного следует, что ответом на вопрос, что такое электрический ток? также является решение проблемы носителя электрического заряда. На основании существующих представлений этой проблемы можно сформулировать ряд требований, которым должен удовлетворять носитель электрического заряда. А именно: носитель электрического заряда должен быть элементарной частицей; носитель электрического заряда должен быть свободным и долгоживущим элементом; носитель электрического заряда не должен разрушать структуру атома вещества.

Не сложный анализ существующих фактов позволяет сделать вывод, что выше указанным требованиям удовлетворяет только один элемент уровня “элементарные частицы” физической материи: элементарная частица – фотон .

Совокупность фотонов вместе со средой (эфиром), в которой они существуют, образуют фотонный газ.

Принимая во внимание физическую сущность фотона и выше приведенные сведения можно дать следующее определение:

электрический ток это поток фотонного газа, предназначенный для переноса энергии.

Для понимания механизма движения электрического тока рассмотрим известную модель транспортировки газа метана . Упрощенно она включает в себя магистральный трубопровод, который доставляет газ метан от газового месторождения к месту потребления. Для перемещения газа метана по магистральному трубопроводу необходимо выполнение условия – давление газа метана в начале трубопровода должно быть больше давления газа метана в его конце.

По аналогии с транспортировкой газа метана рассмотрим схему движения электрического тока, состоящую из батареи (источника электрического тока), имеющей два контакта “+” и “-“ и проводника. Если к контактам батареи подсоединить металлический проводник, то получим модель движения электрического тока, подобную транспортировке газа метана.

Условием существования электрического тока в проводнике по аналогии с моделью транспортировки газа метана является наличие: источника (газа) повышенного давления, т. е. источника высокой концентрации носителей электрического заряда; трубопровода – проводника; потребителя газа, т. е. элемента, обеспечивающего снижение давления газа, т. е. элемента (сток), обеспечивающего уменьшение концентрации носителей электрического заряда.

Отличием электрических схем от газо-, гидро- и др. является то, что конструктивно источник и сток исполняются в одном узле (химическом источнике тока-батарее, электрогенераторе и т. п.). Механизм протекания электрического тока заключается в следующем: после подсоединения проводника к батарее, например, химическому источнику тока , в зоне контакта “+” (анод) происходит химическая реакция восстановления, в результате которой осуществляется генерация фотонов, т. е. образуется зона повышенной концентрации носителей электрического заряда. В это же время, в зоне контакта “-“ (катода) под воздействием фотонов, оказавшихся в этой зоне в результате перетока по проводнику, происходит реакция окисления (потребления фотонов), т. е. образуется зона пониженной концентрации носителей электрического заряда. Носители электрического заряда (фотоны) из зоны высокой концентрации (источника) движутся по проводнику в зону низкой концентрации (стоку). Таким образом, сторонней силой или электродвижущей силой (ЭДС), обеспечивающей электрический ток в цепи является разность концентрации (давления) носителей электрического заряда (фотонов), образующейся в результате работы химического источники тока.

Это обстоятельство еще раз подчеркивает справедливость основного вывода энергодинамики , согласно которому силовые поля (и в том числе электрическое поле) создается не массами, зарядами и токами самими по себе, а их неравномерным распределением в пространстве.

Исходя из рассмотренной сущности электрического тока, очевидна абсурдность опыта Р. Ч. Толмена и Т. Д. Стюарта по наблюдению инерционного тока в металлах. Способа генерации фотонов за счет изменения скорости механического движения какого-либо макроскопического тела в природе в настоящее время не существует.

Интересным аспектом выше изложенного представления электрического тока является его сравнение с представлением понятия “свет”, рассмотренного в работе : свет это поток фотонного газа… . Указанное сравнение позволяет сделать вывод: свет это электрический ток. Различие в этих понятиях заключается только в спектральном составе фотонов, образующих свет или электрический ток, например, в металлических проводниках. Для более убедительного понимания этого обстоятельства рассмотрим схему генерации электрического тока с помощью солнечной батареи. Поток солнечного света (фотонов видимого диапазона) от источника (солнце) достигает солнечной батареи, которая преобразует падающий поток света в электрический ток (поток фотонов), который по металлическому проводнику поступает потребителю (сток). В данном случае солнечная батарея выполняет роль преобразователя спектра потока фотонов, излучаемого солнцем в спектр фотонов электрического тока в металлическом проводнике.

Выводы . В современной физике не существует доказательств, что электрический ток это направленное движение электронов или каких-либо других частиц. Напротив, современные представления об электроне, электрическом заряде и опыты Рикке показывают на ошибочность данного понятия электрического тока.

Обоснование совокупности требований к носителю электрического заряда, с учетом его эфиродинамической сущности, позволили установить, что электрический ток это поток фотонного газа, предназначенный для переноса энергии.

Движение электрического тока осуществляется из зоны высокой концентрации фотонов (исток) в зону низкой концентрации (сток).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение трех условий: поддержание (генерация) высокой концентрации фотонов в зоне истока, наличие проводника, обеспечивающего переток фотонов и создание зоны потребления фотонов в области стока.

Электричество Электрон.

  • Багоцкий В. С., Скундин А. М. Химические источники тока. – М.: Энергоиздат, 1981. – 360 с.
  • Эткин В.А. Энергодинамика (синтез теорий переноса и преобразования энергии).- СПб, Наука, 2008. 409 с.
  • Лямин В. С., Лямин Д. В. О постоянстве скорости света.
  • Лямин В.С. , Лямин Д. В. г. Львов