» статьёй про то, как получить воду из воздуха . Где попробуем рассмотреть этот вопрос настолько подробно, насколько это возможно.

Как получить воду из воздуха? На самом деле всё очень просто. На эту мысль меня натолкнул видео-ролик от канала Интер, где рассказывалось про некоего изобретателя из США по имени Терри Леблю, который бесплатно раздаёт воду из воздуха для всех желающих. А злобные и неизвестные конкуренты делают набеги на дом этого изобретателя и подавляют его. Собственно, вот сам ролик:

Естественно, первая мысль у здравого человека при просмотре этого ролика: «Что же это такое супер-пупер нашёл этот изобретатель, что его подавляют неизвестные враги?» А вторая мысль: «Надо бы посмотреть про получение воды из воздуха в интернете».

И что оказывается? Оказывается, что этот изобретатель изобрёл велосипед — то есть, прибор, который уже много лет известен, но не очень распространён по ряду причин, о которых мы расскажем далее. Причём не так далеко — в Крыму — есть остатки попросту гигантских генераторов воды именно этим способом, построенных тысячи лет назад. Подробнее про это — в статье «Назначение загадочных пещерных комплексов в «пещерных городах» Крыма «. Но у нас цель — не древность, а свременность, поэтому продолжим работу.

Так, по слухам, получение воды из воздуха путем его конденсации на холодной поверхности известно с глубокой древности. Город Феодосия еще в средние века снабжался водой, которую собирали специально организованными сооружениями, заполненными щебнем, на поверхности которого в засушливые летние месяцы конденсировалось такое количество воды, которое обеспечивало 80 тысяч жителей

Кстати, между прочим, практически каждый из вас знаком с таким прибором, получающим воду. Этот прибор называется «кондиционер». Принцип работы генераторов атмосферной воды — приборов по получению воды из воздуха — аналогичен работе кондиционера.

То есть, последовательность получения воды из воздуха такова:

  1. Влажный воздух проходит через прибор.
  2. Охлаждается.
  3. Влага конденсируется на охлаждающих поверхностях.
  4. И стекает в специальную ёмкость.
  5. Ну а затем очищается от пыли и бактерий — и вуаля, её можно пить!

По составу вода, которая получается из воздуха, сродни дождевой — а, значит, и росе, туману, дистилированной, обратноосмотической и талой воде. То есть, вода из воздуха относится к классу «слабоминерализованные воды «. В отличие от или воды обычной, слабоминерализованные воды содержат до 50 миллиграмм разнообразных солей в литре (кубическом дециметре).

Ранее мы упоминали, что генераторы атмосферной воды менее распространены, чем обычные фильтры, по ряду причин. Разберёмся в этом подробнее. Факторы, которые влияют на производительность генераторов атмосферной воды и их энернозатратность:

  • количество воды
  • температура воздуха
  • пропущенный обЪём воздуха в единицу времени.

Соответственно, чем более влажный воздух, тем меньше нужно энергии на его охлаждение для конденсации влаги. И тем более экономически выгодно получение воды из воздуха. Соответственно, чем более нагрет воздух, тем больше нужно энергии, чтобы его охладить. И чем больше воздуха охлаждается в единицу времени, тем больше будет получено воды.

В условиях жаркого и сухого воздуха, то есть, в тех местах, где вода действительно необходима, атмосферные генераторы воды будут потреблять наибольшее количество энергии. Но это количество можно уменьшить, если повлиять на перечисленные факторы.

Итак, нужно понимать:

Генератор воды из воздуха = кондиционер

Так, существует направление в разработке атмосферных генераторов воды, которое предполагает использование дополнительной фазы: между первым и вторым шагом получения воды из воздуха появляется ещё один — применение адсорбента или абсорбента , то есть, веществ, которые тем или иным способом поглощают воду из воздуха. Ну а потом вода должна выделиться из поглотившего её материла (для чего материал, например, нагревается) в виде испарений, и уже в более концентрированном виде охлаждается и конденсируется при меньшей температуре.

Воду предполагается поглощать ночью, когда относительная влажность повышена, а извлекать днем путем использования солнечной энергии для нагрева воздуха, подаваемого в слой адсорбента (воздухонагревателем в этом случае является приемник солнечной энергии).

В качестве адсорбента может использоваться широкопористый силикагель, цеолит. В качестве абсорбента — раствор гигроскопичной соли (например, хлорида лития). Возможны комбинации адсорбента и абсорбента, повышающие эффективность поглощения и выдачи воды. Для уменьшения энергозатрат на получение воды предлагают использовать аккумуляторы тепла и/или холода (в основном в виде дешевых, но массивных конструкций из камня или бетона), работающие в противофазе, противоточный теплообменник либо тепловой насос для рекуперации тепла конденсации воды

Естественно, не всегда все эти условия сочетаются оптимально, и адсорбенты в них не применяются, и именно поэтому сейчас более выгодно очищать водопроводную воду с помощью разнообразных , а не получать её из воздуха. Но с ростом дефицита воды вполне возможно, что обычные бытовые фильтры будут постепенно вытесняться генераторами атмосферной воды.

И, кстати, одновременно с ростом дефицита воды прогнозируется и глобальное потепление. Так что актуальными становятся не только генераторы, но и кондиционеры. И, следовательно, вывод — если уж и задумываться о создании генератора атмосферной воды, то лишь в комплекте с кондиционером, что снижает и себестоимость очищенной воды, и себестоимость охлаждения комнаты. Так что если вы — владелец кондиционера, то вы также владеете генератором атмосферной воды и легко можете получать воду из воздуха.

Ну или, если вы — владелец дачного участка, и хотите обеспечить себя водой из воздуха — то можно воспользоваться изобретением со странички http://www.freeseller.ru/dompower/vodosnab/2401-generator-vody-iz-vozdukha.html, где в качестве адсорбента используется газета, а в качестве источника энергии — солнце.

И, напоследок, интересный прибор для получения воды из воздуха — водяной конус:

On7gbKIa5zc

Система очень проста, и чем больше площадь поверхности для конденсации влаги, тем произвоидтельнее установка.

Таким образом, получить воду из воздуха очень просто!

Генератор воды из воздуха на приусадебном участке. March 9th, 2009

Египет на дачном участке
Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный. . .
.

Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
На Рис. 1 показан разрез фундамента.

Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;

Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Таблица 1

Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)
ostrov

Ученые создали машину, извлекающую воду из воздуха

«Водяную мельницу» можно использовать для получения чистой питьевой воды практически везде, где есть электричество. Для производства воды устройству достаточно электроэнергии, расходуемой тремя электрическими лампами.

Получение воды, пригодной для питья, проходит несколько этапов. Вначале устройство втягивает в себя воздух через специальные фильтры, очищая его от пыли и сора, потом воздух охлаждается до температуры, при которой появляется влага. Конденсированная вода проходит через резервуар, где с помощью ультрафиолетовых излучений уничтожаются возможные инфекции. В итоге вода очищается, а затем по трубам поступает в холодильник или кухонный кран. Сделанное из белого пластика устройство напоминает гигантский мяч для гольфа, расколотый пополам.

Разработчики утверждают, что сейчас в «Водяной мельнице» нет острой необходимости. Однако уже сегодня люди не хотят зависеть от систем водоснабжения, на которые нельзя положиться.

Устройством в первую очередь должны заинтересоваться сторонники «зеленого» образа жизни. Дело в том, что производство и потребление воды в пластиковых бутылках уже давно превратилось в экологическую катастрофу. Только жители США потребляют порядка 30 миллиардов литров воды в бутылках в год. 30 миллионов бутылок каждый день оказываются на свалках. Неудивительно, что в Тихом океане несколько лет назад был обнаружен целый остров из мусора, значительную часть которого составляют именно пластиковые бутылки.

Недостатков у «Водяной мельницы» всего два. Во-первых, цена – 1200 долларов. Как отмечают разработчики, в условиях кризиса машина может оказаться недоступной для массового потребителя. Однако покупка WaterMill окупит себя уже через пару лет, ведь ее обладатель перестанет покупать воду в пластиковых бутылках.

Во-вторых, устройство может работать не везде. Например, в Аризоне нередко происходит снижение уровня относительной влажности ниже 30%, что мешает получению воды из воздуха. Впрочем, ученые нашли выход и из этой ситуации: встроенный в устройство компьютер позволяет увеличивать производительность воды на рассвете, когда уровень влажности выше всего.

Материал подготовлен редакцией rian.ru на основе информации открытых источников

С проблемой получения воды сталкивались многие, кому доводилось попадать в экстремальные условия. Путешественники нередко оказывались в ситуациях, когда поблизости нет ни реки, ни даже самого крошечного родника. Между тем, вода для человеческого организма важнее, чем пища, и если ее не добыть, то попавший в беду путешественник помощи может и не дождаться. Воду можно получить из воздуха. Она имеет свойство конденсироваться, и если построить специальное устройство, то за несколько часов удастся получить количество влаги, достаточное для поддержания жизнедеятельности организма. Предметы, необходимые для строительства конденсирующего устройства, любители экстрима обычно берут с собой в поход.

Вам понадобится:

  • лопата;
  • кусок полиэтилена или другого пластика;
  • трубка от капельницы;
  • несколько камней.

Инструкция

1. Для конденсации воды необходимо использовать солнечное тепло. Если положить на землю кусок полиэтилена, воздух под ним начнет прогреваться. Какое-то количество влаги в воздухе всегда есть, даже если давно не было дождя. Надо только эту воду забрать. Воздух, оказавшийся между землей и полиэтиленом, будет греться до тех пор, пока не насытится влагой так, что не сможет больше ее удерживать. Полиэтилен в любом случае будет холоднее находящегося под ним воздуха, а соответственно, капельки начнут оседать на полиэтилен. Если их станет много, они станут срываться и могут даже потечь небольшими ручейками. Поэтому надо построить для них ловушку.

2. Выройте яму диаметром примерно 1 м и глубиной около 0,5 м. На дно ямы поставьте ведро. Это и будет «ловушка» для воды. В ведро вставьте трубку от капельницы и выведите ее наверх. Трубка может быть и резиновой. Главное, чтобы она была достаточно длинной, не меньше расстояния между краем ямы и ведром. Если вы вставляете трубку сразу, то ее нужно чем-нибудь закрепить — например, положить на краю ямы камень и привязать к нему трубку. Но ее можно вставить и потом, когда все будет готово.

3. Расстелите над ямой кусок полиэтилена. Он должен не только полностью закрывать яму, но и основательно провисать, поэтому кусок нужен длиной 1,5-2 м. Короткие края его прижмите камнями. На середину полиэтилена тоже положите камень. Груз должен оказаться прямо над ведром.

Обратите внимание!

Вода сконденсируется не сразу. Нужно подождать примерно сутки, прежде чем наберется 0,5 литра. Но ведь можно сделать и несколько таких приспособлений, если есть полиэтилен или другой пластик. При этом ночью вода будет конденсироваться быстрее, чем днем, поскольку полиэтилен очень быстро охлаждается, а почва остывает гораздо медленнее.

Нехватка воды становится одним из главных факторов, сдерживающих развитие цивилизации во многих регионах Земли. В ближайшие 25-30 лет мировые запасы пресной воды сократятся в два раза.

За последние сорок лет количество чистой пресной воды из расчета на каждого человека уменьшилось практически на 60%. Как результат, сегодня около двух миллиардов людей в более чем 80 странах страдают от недостатка питьевой воды.

А уже к 2025 году ситуация более усугубится, по прогнозам недостаток питьевой воды ощутят на себе более трех миллиардов человек.

Только 3% пресной воды Земли находятся в реках, озёрах и почве, из них для человека легкодоступен только 1%. Несмотря на то, что цифра невелика этого было бы вполне достаточно для полного удовлетворения человеческих потребностей в случае если бы вся пресная вода (именно этот 1%) была распределена равномерно по местам проживания человека.

Атмосферный воздух является гигантским резервуаром влаги, и даже в засушливых районах содержит, как правило, более 6-10 г воды на 1 м3. А в 1 км3 приземного слоя атмосферы в жарких, засушливых и пустынных областях Земли содержится до 20 000 тонн водяных паров. Количество воды, находящейся в каждый данный момент в атмосфере Земли, равно 14 тыс. км3, в то время как во всех речных руслах всего 1,2 тыс. км3. Однако погодно-климатические условия в этих зонах не позволяют водяным парам достигнуть состояния насыщения и выпасть в виде осадков.

Ежегодно с поверхности суши и океана испаряется около 577 тысяч кубокилометров воды которые потом выпадают в виде осадков. В этом объеме речной годовой сток составляет лишь 7% от общего количества осадков. Сравнивая общее количество испаряющейся влаги и количество воды в атмосфере можно сделать вывод: в течение года вода в атмосфере обновляется 45 раз.

Взгляд в прошлое


В истории человечества есть примеры добывания атмосферной влаги из воздуха, один из них – колодцы, построенные вдоль Великого шёлкового пути, величайшего в истории человечества инженерно-транспортного сооружения. Они были вдоль всего пустынного пути на расстоянии в 12-15 км друг от друга. В каждом из них количество воды было достаточно для того, чтобы напоить караван в 150 - 200 верблюдов.

В таком колодце чистая вода получалась из атмосферного воздуха. Разумеется, процентное содержание водяных паров в пустынном воздухе крайне незначительно (меньше 0,01% удельного объёма). Но, благодаря конструкции колодца через его объём «прокачивался» пустынный воздух тысячами кубометров в сутки и у каждого такого кубометра отнималась практически вся масса воды, содержащаяся в нём.

Сам колодец был наполовину своей высоты вкопан в грунт. Путешественники спускались за водой по лестницам, на отмостки и черпали воду. В центре возвышалась аккуратно выложенная высоким конусом груда камней углубления для скопившейся воды. Арабы свидетельствуют, что скопившаяся вода, и воздух на уровне отмостков, были на удивление холодными, хотя снаружи колодца стояла убийственная жара. Нижняя тыльная часть камней в груде была влажной, а на ощупь камни были холодными.

Стоит только обратить внимание на тот факт, что керамическая облицовка и в те времена была недешёвым материалом, но строители колодцев не считались с затратами и делали такие покрытия над каждым колодцем. А ведь это делалось неспроста, материалу из глины можно придать любую необходимую форму, затем отжечь и получить готовую деталь, способную работать в самых тяжёлых климатических условиях,долгие годы.

В конусном или шатровом своде колодца были выполнены радиальные каналы, прикрытые керамической облицовкой, или сама керамическая облицовка представляла собой набор деталей с уже готовыми сечениями радиальных каналов. Нагреваясь под лучами солнца, облицовка передавала часть тепловой энергии воздуху в канале. Возникало конвективное течение нагретого воздуха по каналу. В центральную часть свода вбрасывались струи нагретого воздуха. Но, как и почему появлялось вихревое движение внутри здания колодца?

Самое первое предположение – ось каналов не совпадала с радиальным направлением. Имелся небольшой угол между осью канала и радиусом свода, то есть, струи были тангенциальными (Рис. 2). Строители использовали очень малые углы тангенциальности. Вероятно, поэтому технологический секрет инженеров древности остаётся неразгаданным и по сей день.

Использование струй малой тангенциальности с доведением их числа до бесконечности открывает новые возможности в вихревых технологиях. Только не надо при этом воображать себя первопроходцами. Инженеры в древности довели эту технологию до совершенства. Высота здания колодца, включая его вкопанную часть, составляла 6 - 8 метров при диаметре здания в основании не более 6 метров, но в колодце возникало и устойчиво работало вихревое движение воздуха.

Охлаждающий эффект вихря использовался с очень высоким КПД. Конусная груда камней действительно исполняла роль конденсатора. Ниспадающий «холодный» осевой поток вихря отнимал тепло камней, охлаждал их. Водяной пар, содержащийся в ничтожных количествах в каждом удельном объёме воздуха, конденсировался на поверхностях камней. Таким образом, в углублении колодца шёл постоянный процесс накопления воды.

«Горячий» периферийный поток вихря выбрасывался наружу через входные проёмы лестничных спусков в колодец (Рис. 3). Только этим можно объяснить наличие сразу нескольких спусков внутрь колодца. Благодаря большой инерционности вращения вихревого образования, колодец работал круглосуточно. При этом каких-либо других видов энергии, кроме солнечной, использовано быть не может. Вода добывалась и днём, и ночью. Вполне возможно, что ночью колодец работал даже интенсивнее, чем днём, поскольку температура воздуха пустыни после захода солнца падает на 30…40єС, что сказывается на его плотности и влажности.

Современный метод


В результате проведённых экспериментов омским изобретателем было найдено комплексное технологическое решение. Изобретенная им установка по извлечению влаги из атмосферного воздуха, помимо основной своей задачи, позволяет удалить из воздуха частицы пыли, даже самой мельчайшей фракции.

Метод позволяет сконденсировать всю газообразную влагу, присутствующую в воздушном потоке, достигая температуры конденсации и каплеобразования, исключительно газодинамическим способом без применения хладагента.

Технологическое решение состоит из двух ступеней. При прохождении воздуха через первую ступень создается интенсивно-закрученное течение с целью разделения частиц пыли и воздуха с последующим осаждением пыли в бункере. Во второй ступени чтобы с достаточной эффективностью сконденсировать влагу воздух необходимо охладить.

Итак, весь объём поступающего воздуха в градиентном сепараторе интенсивно закручивается, и в конфузорной части градиентного сепаратора происходит его расслоение и разделение на основные две составляющие зоны – центральную и периферийную.

Так как, в поперечном сечении закрученного потока разряжение формирующееся центрального вихря намного превышает разряжение периферийного торроидального вихря, то газообразная влага попросту втягивается и концентрируются в центральной зоне канала в виде «шнура». В центре закрученного потока вследствие понижения температуры начинает происходить частичная конденсация водяных паров, мельчайших частицы пыли соприкасаются друг с другом, это в результате приводит к интенсивной коагуляции частиц пыли.

На основании вполне изученных инерционных сил, сам воздух прижимается по периферии и абсолютно без какого-либо избыточного давления как бы «переуплотняется», правильнее даже применить такой термин как «псевдо-уплотнение» и через отборный периферийно-радиальный патрубок посредством дымососа направляется обратно в атмосферу.

При работе градиентного сепаратора, над его заборным соплом формируется искусственный смерч, имеющий размеры как у естественно образовавшегося, но с гораздо более высокой интенсивностью вращения.

Далее насыщенную влаго-воздушную смесь отсасывают через пылеотборный патрубок по оси канала и направляют на вторую ступень сепарации, где она пропускается через второй градиентный сепаратор и происходит конденсация водяных паров в водоприёмном бункере.

7. Дымосос периферийного отбора 2-й ступени;
8. Пылеосадительный бункер №1.
9. Водопринимаемый бункер №2.

Минимальная производительность установки, при которой можно получить ощутимый эффект влагообразования – 150 000 нм³/час. Количество воды, которое можно получить с этой установки составляет 1,357 тонны в час или 32,58 тонн в сутки.