В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока ). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка . Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 . Однако не известны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000-2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Чем меньше температура тела накаливания, тем меньшая доля энергии , подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение , и тем более «красным» кажется излучение.

Для оценки физиологического качества светильников используется понятие цветовой температуры . При типичных для ламп накаливания температурах 2200-2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма (нарушение его синтеза негативно сказывается на здоровье).

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом - обычно аргоном . На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурный коэффициент сопротивления , что означает увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников , что экономически выгодно отличает их от газоразрядных люминесцентных ламп . Для нити накаливания осветительной лампы типично сопротивление в холодном состоянии в 10 раз меньше, чем в нагретом до рабочих температур.

Для изготовления обычной лампочки требуется как минимум 7 металлов .

Конструкция

Конструкции ламп весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы, могут применяться держатели тела накала различной конструкции. Крючки-держатели тела накала ламп накаливания (в том числе ламп накаливания общего назначения) изготовляются из молибдена . Лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. В настоящее время отказываются от применения предохранителей из-за их малой эффективности.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении через тело накала протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растёт) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Разновидности

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые
  • Ксенон-галогенные с отражателем ИК-излучения (так как большая часть излучения лампы приходится на ИК-диапазон, то отражение ИК-излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения , их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром около 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счёт особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы - разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первое число означает рабочее напряжение в вольтах, второе - силу тока в миллиамперах;
  • Фотолампа , перекальная лампа - разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400 К, по сравнению с 2700 К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
  • Проекционные лампы - для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы . В автомобиле - может быть у лампы переднего света одна нить для дальнего света, другая для ближнего, или, к примеру, одна нить для габаритного огня, другая для стоп-сигнала. Кроме того, такие лампы могут содержать экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей. В самолёте посадочно-рулёжная фара имеет основную нить, на которой лампа работает без внешнего охлаждения и дополнительную, включаемую вместе с основной, позволяя получить более мощный свет, но только при внешнем охлаждении - обдуве набегающим потоком воздуха. В звёздах Московского Кремля используются специально сконструированные двухнитевые лампы, обе нити включены параллельно.
  • Лампа-фара . Лампа сложной специальной конструкции, применяемая на подвижных объектах, фигурная колба которой выполнена в виде части корпуса фары с отражателем. Конструктивно содержит в себе нить(и) накала, отражатель, рассеиватель, элементы крепления, клеммы и т. д. Лампы-фары широко применяются в современной автомобильной технике и уже достаточно давно в авиации.
  • Малоинерционная лампа накаливания , лампа накаливания с тонкой нитью - использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа . Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала . С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы - основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов . Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесённым тонером . За счёт тепла, передающегося от вала, тонер расплавляется и впрессовывается в структуру бумаги.
  • Лампы специального спектра излучения . Применяются в разнообразной технике.

История изобретения

Перегоревшую лампу, колба которой сохранила целостность, а нить разрушилась лишь в одном месте, можно починить путём встряхиваний и поворотов, таких, чтобы концы нити вновь соединились. При прохождении тока концы нити могут сплавиться и лампа продолжит работу. При этом однако может выйти из строя (расплавиться/обломиться) предохранитель, входящий в состав лампы.

Последовательное подключение

При последовательном подключении ламп накаливания сильно снижается их световая эффективность и меняется цветовая температура. Данный способ используется с целью продлить срок службы ламп или получить освещение более низким накалом (например, при создании интерьера под старину). Для освещения хорошо использовать подключение по две лампы последовательно, но и три лампы могут дать достаточный свет. Данные виды освещения крайне неэффективны и скорее могут найти применение в качестве источников тепла, когда свет от ламп нежелателен (например, при обогреве лампами картофеля в погребе). Ниже приводятся параметры ламп накаливания при последовательном подключении.

Данные приводятся относительно стандартных ламп 95Вт со светоотдачей 13,8лм/Вт (1311лм) и температурой тела накала 2700°C (на практике может быть ниже) при которой пик излучения приходится на длину волны 975нм.

Две лампы 1870°C (жёлтый свет), 2,75лм/Вт, одна лампа 33,25Вт 91,4лм, две 66,5Вт 183лм. Пик излучения 1352нм. Срок службы 35-45 тыс. часов.

Три лампы 1480°C (жёлто-оранжевый свет), 0,845лм/Вт, одна лампа 18,07Вт 15,27лм, три 54,2Вт 45,8лм. Пик излучения 1653нм. Срок службы 250-350 тыс. часов (практически не ограничен).

Четыре лампы 1250°C (оранжевый свет), 0,195лм/Вт, одна лампа 11,74Вт 2,29лм, четыре 46,94Вт 9,15лм. Пик излучения 1903нм. Срок службы не ограничен.

Пять ламп 1090°C (красновато-оранжевый свет), ≈0,044лм/Вт, одна лампа 8,5Вт ≈0,374лм, пять 42,49Вт ≈1,87лм. Пик излучения 2126нм. Срок службы не ограничен.

Шесть ламп 960°C (красно-оранжевый свет), светоотдача в пределах ≈0,0075-0,011лм/Вт, одна лампа 6,52Вт, шесть 39,12Вт. Пик излучения 2350нм. Срок службы не ограничен.

Как видно из параметров, освещение возможно двумя или тремя лампами последовательно, если использовать подключение по четыре лампы, то для получения приемлемого света нужно использовать мощные промышленные лампы накаливания. Подключения по четыре, пять и шесть ламп последовательно удобны, когда лампы используются как обогреватели воздуха. Если лампы используются как замена свечного освещения, то подключение по две последовательно по цвету примерно соответствует пламени парафиновой свечи, а подключение по три близко по цвету к пламени масляной лампы (в сочетании с низким световым потоком данное подключение очень хорошо имитирует огонь). Четыре лампы последовательно удобны для создания света углей в камине, так как дают очень похожий свет. Следует заметить, что при слабом накале и малой мощности ламп они нагреваются достаточно сильно, так как из-за снижения температуры тела накала излучаемое инфракрасное излучение смещается в длинноволновую область и значительный его процент задерживается стеклом колбы, которое становится непрозрачным после 2700нм.

Также выпускаются лампы, специально предназначенные для включения последовательно. Например, на старых вагонах метро для освещения салона последовательно включалось по 15 ламп на напряжение 50 В (что в сумме даёт 750 В - напряжение на контактном рельсе); конструкция таких ламп включает специальное самозакорачивающее устройство, благодаря которому при перегорании одной лампы остальные продолжают гореть.

Преимущества и недостатки ламп накаливания

Преимущества

  • низкая цена
  • небольшие размеры
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • мгновенное зажигание и перезажигание
  • незаметность мерцания при работе на переменном токе (важно на предприятиях)
  • возможность использования регуляторов яркости
  • приятный и привычный в быту спектр; спектр излучения лампы накаливания определяется исключительно температурой рабочего тела и не зависит ни от каких иных условий, что следует из принципа её работы. Он не зависит от применяемых материалов и их чистоты, стабилен во времени и имеет стопроцентную предсказуемость и повторяемость. Это важно в том числе при больших инсталляциях и в светильниках из сотен ламп: нередко можно увидеть, когда при применении современных люминофорных или светодиодных ламп они имеют разный цветовой оттенок в пределах группы. Это уменьшает эстетическое совершенство инсталляций. При неисправности одной лампы часто приходится заменять всю группу целиком, но даже при установке ламп из одной партии встречается девиация спектра
  • высокий индекс цветопередачи , Ra 100
  • непрерывный спектр излучения
  • резкие тени (как при солнечном освещении) благодаря малому размеру излучающего тела
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
  • налаженность в массовом производстве
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • отсутствие пускорегулирующей аппаратуры
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • отсутствие гудения при работе на переменном токе (ввиду отсутствия электронного балласта, драйвера или преобразователя)
  • при работе не создаёт радиопомехи
  • устойчивость к электромагнитному импульсу
  • нечувствительность к ионизирующей радиации

Недостатки

Производство

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания .

23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» . Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года - мощностью 25 Вт и более.

Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против - соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона, и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб, а в случае вандализма (повреждение люминесцентной лампы из хулиганских побуждений) - возникает опасность загрязнения помещения парами ртути.

Современный рынок осветительных приборов сегодня представлен не только разнообразными светильниками, но и источниками света. Одними из самых старых лампочек современности являются лампы накаливания (ЛН).

Даже беря во внимание то, что сегодня существуют более совершенные источники света, лампы накаливания все еще широко используются людьми для освещения различного рода помещений. Здесь мы рассмотрим такой важный параметр данных ламп, как температура нагрева при работе, а также цветовая температура.

Особенности источника света

Лампы накаливания представляют собой самый первый источник электрического света, который был изобретен человеком. Данная продукция может иметь разную мощность (от 5 до 200 Вт). Но наиболее часто используются модели на 60 Вт.

Обратите внимание! Самый большой минус ламп накаливания – высокое потребление электроэнергии. Из-за этого с каждым годом уменьшается число ЛН, которые активно используются в качестве источника света.

Перед тем, как приступать к рассмотрению таких параметров, как температура нагрева и цветовая температура, необходимо разобраться в конструкционных особенностях подобных ламп, а также в принципе ее работы.
Лампы накаливания в ходе своей работы преобразует электрическую энергию, проходящую по вольфрамовой нити (спирали) в световую и тепловую.
На сегодняшний день излучение, по своей физической характеристике, делится на два типа:

Устройство лампы накаливания

  • тепловое;
  • люминесцентное.

Под тепловым, которое характерно для ламп накаливания, подразумевается световое излучение. Именно на тепловом излучении основано свечение электрической лампочки накаливания.
Лампы накаливания состоят из:

  • стеклянной колбы;
  • тугоплавкой вольфрамовой нити (часть спирали). Важный элемент всей лампы, так как при повреждении нити лампочка перестает светиться;
  • цоколя.

В процессе работы таких ламп происходит повышение t0 нити из-за прохождения через нее электрической энергии в виде тока. Чтобы избежать быстрого перегорания нити в спирали, из колбы выкачивают воздух.
Обратите внимание! В более продвинутых моделях ламп накаливания, коими является галогеновые лампочки, вместо вакуума в колбе закачан инертный газ.
Установка вольфрамовой нити происходит в спираль, которая закреплена на электродах. В спирали нить находится посередине. Электроды, к которым происходит установка спирали и вольфрамовой нити, соответственно, припаиваются к разным элементам: один к металлической гильзе цоколя, а второй – к металлической контактной пластине.
В результате такой конструкции электрической лампочки, ток, проходя через спираль, вызывает нагрев (повышение t0 внутри колбы) нити, так как он преодолевает ее сопротивление.

Принцип работы лампочки

Работающая лампа накаливания

Нагрев ЛН во время работы происходит из-за конструкционных особенностей источника света. Именно из-за сильного нагрева во время работы время эксплуатации ламп значительно уменьшается, что делает их сегодня не такими выгодными. При этом из-за нагрева нити происходит повышение t0 самой колбы.

Принцип работы ЛН основывается на преобразовании электрической энергии, которая проходит через нити спирали, в световое излучение. При этом температура разогретой нити может достигать 2600- 3000 оС.

Обратите внимание! Температура плавления для вольфрама, из которого изготовлены нити спирали, составляет 3200-3400 °С. Как видим, в норме температура нагрева нити не может привести к началу процесса плавления.

Спектр ламп при таком строении заметно отличается от спектра дневного света. Для такой лампы спектр излучаемого света будет характеризоваться преобладанием красных и желтых лучей.
Стоит отметить, что колбы у более современных моделей ЛН (галогеновых) не вакуумируются, а также не содержат в своем составе спиральной нити. Вместо нее внутрь колбы закачивают инертные газы (аргон, азот, криптон, ксенон и аргон). Такие конструкционные усовершенствования привели к тому, что температура нагрева колбы во время работы несколько уменьшилась.

Преимущества и недостатки источника света

Несмотря на то, что сегодня рынок источников света изобилует самыми разнообразными моделями, лампы накаливания на нем встречаются еще достаточно часто. Здесь можно найти изделия на различное количество Вт (от 5 до 200 Вт и выше). Самыми востребованными лампочками являются от 20 до 60 Вт, а также 100 Вт.

Ассортимент выбора

ЛН продолжают достаточно широко использоваться потому, что у них имеются свои преимущества:

  • при включении зажигание света происходит практически мгновенно;
  • небольшие габариты;
  • низкая стоимость;
  • модели, внутри колбы которых имеется только вакуум, являются экологически чистой продукцией.

Именно такие достоинства и обусловили то, что ЛН еще являются достаточно востребованными в современном мире. В домах и на производстве сегодня легко можно встретить представителей данной осветительной продукции на 60 Вт и выше.
Обратите внимание! Большой процент использования ЛН относится к промышленности. Зачастую здесь используются мощные модели (200 Вт).
Но лампы накаливания имеют и достаточно внушительный перечень недостатков, к которым можно отнести:

  • наличие слепящей яркости света, исходящего от ламп в процессе работы. В результате этого требуется использование специальных защитных экранов;
  • во время работы наблюдается нагревание нити, а также самой колбы. Из-за сильного нагрева колбы при попадании на ее поверхность даже незначительного количества воды, возможен взрыв. Причем нагревание колбы происходит у всех лампочек (хоть на 60 Вт, хоть ниже или выше);

Обратите внимание! Увеличение нагрева колбы еще несет в себе определенную степень опасности травмироваться. Повышенная температура стеклянной колбы, при прикосновении к ней незащищенными участками кожи, может вызвать ожог. Поэтому такие лампы не стоит ставить в те светильники, к которым может легко дотянуться ребенок. Кроме этого повреждение стеклянной колбы может вызвать порезы или спровоцировать другие травмы.

Накал вольфрамовой нити

  • высокое потребление электроэнергии;
  • при выходе из строя не поддаются ремонту;
  • низкий срок эксплуатации. Лампы накаливания быстро выходят из строя по причине того, что в момент включения или выключения света нить спирали может повредиться из-за частого нагрева.

Как видим, использование ЛН несет в себя гораздо больше минусов, чем плюсов. Самыми главными недостатками лап накаливания считается нагрев из-за повышения температуры внутри колбы, а также высокое потребление электроэнергии. Причем это касается всех вариантов ламп с мощностью от 5 до 60 Вт и выше.

Важные параметры оценки

Одним из наиболее важных параметров работы ЛН является световой коэффициент. Этот параметр имеет вид отношения мощности излучения видимого спектра и мощности потребленной электроэнергии. Для данной продукции это достаточно малая величина, которая не превышает 4%. То есть, для ЛН характерна низкая светоотдача.
К другим важным параметрам работы можно отнести:

  • световой поток;
  • цветовая t0 или цвет свечения;
  • мощность;
  • срок службы.

Рассмотрим первые два параметра, так как со сроком службы мы разобрались в предыдущем пункте.

Световой поток

Световой поток представляет собой физическую величину, которая определяет количество световой мощности в конкретном потоке излучения света. Кроме этого здесь имеется еще один важный аспект, как световая отдача. Она определяет для лампы отношение излучаемого лампочкой светового потока к мощности, которую она потребляет. Световая отдача измеряется в лм/Вт.

Обратите внимание! Световая отдача служит показателем экономичности и эффективности источников света.

Таблица светового потока и световой отдачи ламп накаливания

Как видим, для нашего источника света вышеперечисленные величины находятся на низком уровне, что свидетельствует об их небольшой эффективности.

Цвет свечения лампочек

Цветовая температура (t0) также является важным показателем.
Цветовая t0 представляет собой характеристику хода интенсивности светового излучения лампочки и является функцией длины волны, определенной для оптического диапазона. Данный параметр измеряется в кельвинах (К).

Цветовая температура для лампы накаливания

Стоит отметить, что цветовая температура для ЛН находится примерно на уровне 2700 К (для источников света с мощностью от 5 до 60 Вт и выше). Цветовая t0 ЛН находится в красной и тепловой оттеночной области видимого спектра.
Цветовая t0 полностью соответствует степени нагревания вольфрамовой нити, что не дает возможность ЛН быстро выйти из строя.

Обратите внимание! Для других источников света (например, светодиодные лампочки) цветовая температура не отображает степень их прогрева. При параметре нагрева ЛН в 2700 К светодиод прогреется всего лишь на 80ºС.

Таким образом, чем больше будет мощность ЛН (от 5 до 60 Вт и выше), тем больше будет происходить нагревание вольфрамовой нити и самой колбы. Соответственно, тем больше будет цветовая t0. Ниже приведена таблица, по которой можно сравнить эффективность и потребление мощности разных видов лампочек. В качестве группы контроля, с которой ведется сравнение, здесь взяты ЛН мощностью от 20 до 60 и до 200 Вт.

Сравнительная таблица мощностей разных источников света

Как видим, лампы накаливания по данному параметру значительно проигрывают в плане потребления мощности другим источникам света.

Светотехника и цвет свечения

В светотехнике важнейшим параметром для источника света является его цветовая t0. Благодаря ей можно определить цветовую тональность и цветность источников света.

Варианты цветовой температуры

Цветовая t0 лампочек определяется цветовой тональностью и бывает трех видов:

  • холодной (от 5000 до 120000К);
  • нейтральной (от 4000 до 50000К);
  • теплой (от 1850 до 20000К). Его дает стеариновая свеча.

Обратите внимание! Рассматривая цветовую температуру ЛН, следует помнить, что она не совпадает с реальной тепловой температурой изделия, которая ощущается при прикосновении к ней рукой.

Для ЛН цветовая температура располагается в диапазоне от 2200 до 30000К. Поэтому они могут иметь излучение, близкое к ультрафиолетовому.

Заключение

Для любых типов источников света важным параметром оценки является цветовая температура. При этом для ЛН она служит отражением степени нагрева изделия в процессе его работы. Такие лампочки характеризуются повышением температуры нагрева в ходе функционирования, что служит явным недостатком, которого лишены современные источники света, такие как светодиодные лампочки. Поэтому сегодня многие отдают свое предпочтение люминесцентным и светодиодным лампочкам, а лампы накаливания постепенно уходят в прошлое.

Нередко бывает так, что используемое в быту устройство, имеющее большое значение для всего человечества, ничем не напоминает нам о его создателе. А ведь в наших домах зажглась благодаря усилиям конкретных людей. Их заслуга для человечества неоценима - наши дома наполнились светом и теплом. История представленная ниже, познакомит вас с этим великим изобретением и с именами тех, с кем оно связано.

Что касается последних, можно отметить два имени - Александра Лодыгина и Томаса Эдисона. Хотя заслуга русского ученого была очень велика, пальма первенства принадлежит именно американскому изобретателю. Поэтому мы вкратце расскажем о Лодыгине и подробно остановимся на достижениях Эдисона. Именно с их именами связывается история ламп накаливания. Говорят, что на лампочки у Эдисона ушло огромное количество времени. Ему пришлось провести около 2 тысяч опытов, прежде чем на свет появилась знакомая нам всем конструкция.

Изобретение, сделанное Александром Лодыгиным

История ламп накаливания очень похожа на истории других сделанных в России изобретений. Александр Лодыгин, русский ученый, смог заставить угольный стержень светиться в стеклянном сосуде, откуда был откачан воздух. История создания лампы накаливания начинается в 1872 году, когда ему удалось это сделать. Александр получил патент на электрическую угольную лампу накаливания в 1874 году. Немного позже он предложил заменить вольфрамовым угольный стержень. Вольфрамовая деталь и сейчас используется в лампах накаливания.

Заслуга Томаса Эдисона

Однако именно американский изобретатель, смог создать долговечную, надежную и недорогую модель в 1878 году. Кроме того, ему удалось наладить ее производство. В его первых лампах в роли нити накаливания была обугленная стружка, сделанная из японского бамбука. Вольфрамовые нити, привычные нам, появились значительно позже. Они стали использоваться по инициативе Лодыгина, упоминавшегося выше русского инженера. Не будь его, кто знает, как сложилась бы история ламп накаливания дальнейших лет.

Американский менталитет Эдисона

Существенно отличается от русского. У гражданина США Томаса Эдисона в дело шло все. Интересно, что, размышляя о том, как сделать более прочной телеграфную ленту, этот ученый изобрел вощение бумаги. Затем эта бумага использовалась в виде обертки для конфет. Семь столетий западной истории предшествовали изобретению Эдисона, и не столько развитием технической мысли, сколько постепенно формировавшимся у людей активным отношением к жизни. Многие талантливые ученые упорно шли к этому изобретению. История происхождения лампы накаливания связана, в частности, с именем Фарадея. Он создал фундаментальные труды по физике, без опоры на которые вряд ли было бы осуществимо изобретение Эдисона.

Другие изобретения, сделанные Эдисоном

Томас Эдисон появился на свет в 1847 году в Порт-Херон, небольшом американском городке. В самореализации Томаса сыграло роль то, что молодой изобретатель обладал способностью мгновенно находить инвесторов для своих идей, даже самых дерзких. И они были готовы рискнуть немалыми суммами. Например, еще будучи подростком, Эдисон решил печатать газету в поезде во время движения и затем продавать ее пассажирам. А новости для газеты следовало собирать прямо на остановках. Сразу же нашлись люди, которые ссудили деньги на покупку небольшого печатного станка, а также те, которые пустили Эдисона в багажный вагон с этим станком.

Изобретения до Томаса Эдисона делались либо учеными и были побочным продуктом осуществленных ими открытий, либо практиками, которые совершенствовали то, с чем им приходилось работать. Именно Эдисон сделал изобретательство отдельной профессией. У него было множество идей, и практически каждая из них делалась ростком для последующих, которые требовали дальнейшей разработки. Томас в течение всей своей долгой жизни не заботился о своем личном комфорте. Известно, что, когда он посетил Европу, будучи уже в зените славы, то был разочарован ленью и щеголеватостью европейских изобретателей.

Сложно было найти область, в которой Томас не совершил бы прорыв. Подсчитано, что этот ученый ежегодно делал около 40 крупных открытий. В общей сложности Эдисон получил 1092 патента.

Дух американского капитализма толкал вверх Томаса Эдисона. Ему удалось разбогатеть еще в возрасте 22 лет, когда он придумал котировочный "тиккер" для бостонской биржи. Однако самым важным изобретением Эдисона было именно создание лампы накаливания. Томасу удалось с ее помощью электрифицировать всю Америку, а затем и весь мир.

Строительство электростанции и первые потребители электроэнергии

История создания лампы начинается со строительства небольшой электростанции. Ученый соорудил ее у себя в Менло-Парке. Она должна была обслуживать нужды его лаборатории. Однако получаемой энергии оказалось больше, чем было необходимо. Тогда Эдисон начал продавать излишек соседям-фермерам. Вряд ли эти люди понимали, что стали первыми платными потребителями электроэнергии в мире. Эдисон никогда не стремился стать предпринимателем, однако когда он нуждался для своей работы в чем-либо, он открывал небольшое производство в Менло-Парке, впоследствии разраставшееся до больших размеров и шедшее своим путем развития.

История изменения устройства лампы накаливания

Электрическая лампа накаливания представляет собой источник света, где преобразование в световую энергию электрической происходит из-за накаливания тугоплавкого проводника электрическим током. Световая энергия впервые была получена таким способом при пропускании тока сквозь угольный стержень. Этот стержень был помещен в сосуд, из которого предварительно был откачан воздух. Томас Эдисон в 1879 году создал более-менее долговечную конструкцию с использованием угольной нити. Однако имеется довольно длительная история возникновения лампы накаливания в современном виде. В качестве тела накала в 1898-1908 гг. пытались применять разные металлы (тантал, вольфрам, осмий). Вольфрамовую нить, зигзагообразно расположенную, начали использовать с 1909 года. Лампы накаливания начали наполнять в 1912-13 гг. (криптоном и аргоном), а также азотом. В это же время вольфрамовую нить стали делать в виде спирали.

История развития лампы накаливания далее отмечена ее усовершенствованием путем улучшения световой отдачи. Это осуществлялось с помощью повышения температуры тела накала. Срок службы лампы при этом сохранялся. Заполнение ее инертными высокомолекулярными газами с добавлением галогена привело к уменьшению загрязнения колбы частицами вольфрама, распыляющегося внутри нее. Кроме того, это уменьшило скорость его испарения. Применение тела накала в виде биспирали и триспирали привело к сокращению теплопотерь через газ.

Такова история изобретения лампы накаливания. Наверняка вам интересно будет узнать и о том, что представляют собой различные ее разновидности.

Современные разновидности ламп накаливания

Множество разновидностей электрических ламп состоит из определенных однотипных частей. Они различаются формой и размерами. На металлическом или стеклянном штенгеле внутри колбы закреплено тело накала (то есть сделанная из вольфрама спираль) с помощью держателей, выполненных из молибденовой проволоки. К концам вводов прикреплены концы спирали. Для того чтобы создать вакуумноплотное соединение с лопаткой, выполненной из стекла, средняя часть вводов выполняется из молибдена или платинита. Колба лампы во время вакуумной обработки наполняется инертным газом. Затем штенгель заваривается и образуется носик. Лампа для крепления в патроне и защиты носика снабжается цоколем. Он прикрепляется цоколевочной мастикой к колбе.

Внешний вид ламп

Сегодня существует множество накаливания, которые можно разделить по областям применения (для автомобильных фар, общего назначения и др.), по светотехническим свойствам их колбы или по конструктивной форме (декоративные, зеркальные, с рассеивающим покрытием и др.), а также по форме, которую имеет тело накала (с биспиралью, с плоской спиралью и др.). Что касается габаритов, выделяют крупногабаритные, нормальные, малогабаритные, миниатюрные и сверхминиатюрные. Например, к последним относятся лампы, имеющие длину менее 10 мм, диаметр которых не превышает 6 мм. Что касается крупногабаритных, к ним принадлежат такие, длина которых составляет более 175 мм, а диаметр - не менее 80 мм.

Мощность ламп и срок службы

Современные лампы накаливания могут работать при напряжении от долей единицы до нескольких сотен вольт. Их мощность может составлять десятки киловатт. Если увеличить напряжение на 1 %, световой поток повысится на 4 %. Однако при этом срок службы сократится на 15 %. Если включить лампу на короткий срок на напряжение, которое превышает на 15 % номинальное, она будет выведена из строя. Именно поэтому так часто перепады напряжения вызывают перегорание лампочек. От пяти часов до тысячи и более колеблется срок их службы. Например, на короткое время рассчитаны самолетные фарные лампы, а транспортные могут работать очень долго. В последнем случае их следует устанавливать в местах, которые обеспечивают легкость замены. Сегодня световая отдача ламп зависит от напряжения, конструкции, продолжительности горения и мощности. Она составляет около 10-35 лм/Вт.

Лампы накаливания сегодня

Лампы накаливания по своей световой отдаче, безусловно, проигрывают источникам света, работающим от газа (люминесцентная лампа). Тем не менее они проще в эксплуатации. Для ламп накаливания не требуется сложной арматуры или пусковых устройств. По мощности и напряжению для них практически не существует ограничений. В мире сегодня каждый год производится около 10 млрд ламп. А число их разновидностей превышает 2 тысячи.

Светодиодные лампы

История происхождения лампы уже написана, тогда как история развития этого изобретения еще не завершена. Появляются новые разновидности, которые становятся все более популярными. Речь идет в первую очередь о светодиодных лампах (одна из них представлена на фото выше). Они известны также как энергосберегающие. Эти лампы обладают светоотдачей, превышающей более чем в 10 раз светоотдачу ламп накаливания. Однако у них имеется недостаток - источник питания должен быть низковольтным.

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы - так появились галогеновые лампы. Вольфрам - термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им - неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит - токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород - важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы - платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день - маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока - до 40 %.

Вспомните учебный курс - еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр - несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды - выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение - защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной - выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже - ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны - до 75 Вт световая отдача увеличивается, при превышении - снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель - у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение - в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория - изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения - 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, - к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные - подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе - ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая - для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая - для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности - если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара - сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья - на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД - 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К - в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность - 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача - КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.
  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях - они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически - это давно устаревшие изделия.

Лампа накаливания – электрический осветительный прибор, принцип действия обусловлен нагревом до высоких температур нити тугоплавкого металла. Тепловой эффект тока известен давно (1800 год). С течением времени вызывает сильный нагрев (выше 500 градусов Цельсия), заставляя нить светиться. В стране вещички носят имя Ильича, на деле продвинутые историки бессильны однозначно дать ответ, кого назвать изобретателем лампы накаливания.

Конструкция ламп накаливания

Изучим строение прибора:

История создания ламп накаливания

Спирали далеко не сразу стали изготавливать из вольфрама. Применялись графит, бумага, бамбук. Много людей шло параллельным путем, создавая лампы накаливания.

Бессильны привести список 22 имен ученых, называемых зарубежными писателями авторами изобретения. Неправильно приписывать заслуги Эдисону, Лодыгину. Сегодня лампы накаливания далеки от совершенства, стремительно теряют маркетинговую привлекательность. Превышение амплитуды питающего напряжения на 10% (половину пути — 5% — РФ проделала в 2003 году, подняв вольтаж) номинала сокращает срок службы вчетверо. Снижение параметра закономерно урезает отдачу светового потока: 40% теряется при эквивалентном относительном изменении характеристик питающей сети в меньшую сторону.

Пионерам гораздо хуже. Джозеф Сван (Joseph Swan) отчаялся добиться достаточной разреженности воздуха колбы лампы накала. Насосы (ртутные) того времени неспособны выполнить задачу. Нить сгорала посредством сохранившегося внутри кислорода.

Смысл ламп накала довести спирали до степени нагрева, тело начинает светиться. Сложностей добавляло отсутствие в середине XIX века высокоомных сплавов – квота преобразования силы электрического тока сформирована увеличенным сопротивлением проводящего материала.

Усилия ученых мужей ограничивались следующими направлениями:

  1. Выбор материала нити. Критериями выступали одновременно высокое сопротивление, устойчивость к горению. Волокна бамбука, являющегося изолятором, покрывали тонким слоем проводящего графита. Малая площади проводящего слоя угля повышало сопротивление, давая нужный результат.
  2. Однако древесная основа быстро воспламенялась. Вторым направлением считаем попытки создать полный вакуум. Кислород известен с конца XVIII века, ученые мужи быстро доказали: элемент участвует в горении. В 1781 году Генри Кавендиш определил состав воздуха, начиная разрабатывать лампами накала, слуги науки ведали: земная атмосфера разрушает нагретые тела.
  3. Важно передать напряжение нити. Шла работа, преследующая цели создания разъемных, контактных частей цепи. Понятно, тонкий слой угля снабжен большим сопротивлением, как подвести электричество? Трудно поверить, пытаясь достичь приемлемых результатов, использовали ценные металлы: платина, серебро. Получая приемлемую проводимость. Недешевыми путями удавалось избежать нагрева внешней цепи, контактов, нить накалялась.
  4. Отдельно отметим резьбу цоколя Эдисона, используемую поныне (Е27). Удачная идея, легшая в основу быстро заменяемых лампочек накала. Прочие способы создания контакта, наподобие пайки, мало годятся. Соединение способно распасться, разогретое действием тока.

Стеклодувы XIX века достигли профессиональных высот, колбы изготавливали запросто. Отто фон Герике, конструируя генератор статического электричества, рекомендовал сферическую колбу залить серой. Материал застынет — стекло разбить. Получался идеальный шар, при трении собирал заряд, отдавая стальному стержню, проходящему через центр конструкции.

Пионеры отрасли

Можете прочесть: идея подчинить электричество целям освещения впервые реализована сэром Гемфри Дэви. Вскоре после создания вольтова столба ученый вовсю экспериментировал с металлами. Выбрал благородную платину за высокую температуру плавления – прочие материалы воздухом быстро окислялись. Попросту сгорали. Источник света вышел неяркий, давая основу сотням последующих наработок, показав направление движения желающим получить конечный результат: осветить, заручившись помощью электричества.

Произошло в 1802 году, ученому исполнилось 24 года, позже (1806) Гемфри Дэви представил суду общественности вполне работоспособный разрядный осветительный прибор, в конструкции которого ведущую роль занимали два угольных стрежня. Следует отнести короткую жизнь столь блистательного светила небосвода науки, давшего миру представление о хлоре, йоде, ряде щелочных металлов, на постоянные эксперименты. Смертельные опыты по вдыханию угарного газа, работы с оксидом азота (мощным отравляющим веществом). Авторы отдали честь блистательным подвигам, сократившим жизнь ученого.

Гемфри забросил, вырезав целое десятилетие исследований осветительных приборов, вечно занятый. Сегодня Дэви называют отцом электролиза. Трагедия 1812 года Felling Colliery наложила глубокий отпечаток, помрачив сердца многих. Сэр Гемфри Дэви пополнил ряды занявшихся разработкой безопасного источника света, уберегающего шахтёров. Электричество подходило мало, не существовало мощных надежных источников энергии. Чтобы рудничный газ перестал взрываться временами, применялись разные меры, наподобие металлической сетки-диффузора, препятствующей распространению пламени.

Сэр Гемфри Дэви сильно опередил время. Лет примерно на 70. Конец XIX века лавинообразно выдал новые конструкции, призванные вырвать человечество из вечной тьмы, благодаря использованию электричества. Одним из первых Дэви отметил зависимость сопротивления материалов от температуры, позволяя позже Георгу Ому получить . Спустя полвека открытие было положено в основу создания Карлом Вильгельмом Сименсом первого электронного термометра.

6 октября 1835 года Джеймс Боумэн Линдсей продемонстрировал лампочку накала, окруженную стеклянной колбой для защиты от действия атмосферы. Как выразился изобретатель: можно было читать книгу, рассеивая темноту на расстоянии полутора футов от подобного источника. Джеймс Боумэн, считают общепризнанные источники, является автором идеи защиты нити накала стеклянной колбой. Правда?

Склонны утверждать, в этом месте мировая история немного запуталась. Первый эскиз подобного устройства датируется 1820 годом. Приписывается почему-то Уорену де ла Ру. Которому было… 5 лет от роду. Одинокий исследователь заметил несуразицу, поставив дату… 1840 год. Бессилен детсадовец сделать столь великое изобретение. Причем забылись впопыхах демонстрации Джеймса Боумэна. Многие исторические книги (одна 1961 года, авторства Льюиса) так трактовали неведомо уже откуда взявшуюся картинку. Видимо, автор ошибся, другой источник, 1986 года Джозефа Стоера, относит изобретение на счет Августа Артура де ла Рива (1801 года рождения). Гораздо лучше соответствует действительности, объясняя демонстрации Джеймса Боумэна пятнадцатью годами позже.

Прошло незамеченным русскоязычным доменом. Английские источники проблема трактуют следующим образом: имена де ла Ру и де ла Рив явно перепутаны, касаться могут минимум четырех личностей. Физики Уорен де ла Ру, Август Артур де ла Рив упомянуты, первый в 1820 году посещал детсад, образно говоря. Прояснить историю могут отцы упомянутых мужей: Томас де ла Ру (1793 – 1866), Чарльз Гаспар де ла Рив (1770 – 1834). Неизвестный джентльмен (леди) провел целое исследование, убедительно доказал: ссылка на фамилию де ла Ру несостоятельна, сослался горой научной литературы начала XX — конца XIX века.

Неизвестный потрудился просмотреть патенты Уорена де ла Ру, набралось девять штук. Лампы накала описываемой конструкции отсутствуют. Августа Артура де ла Рива, начавшего публикацию научных трудов в 1822 году, сложно представить изобретающим стеклянную колбу. Посещал Англию – родину лампочки накала – исследовал электричество. Желающие могут написать автору статьи англоязычного сайта по электронной почте [email protected]. Пишет «ежков»: с удовольствием примет к сведению информацию, касающуюся вопроса.

Истинный изобретатель лампочки накала

Достоверно известно, в 1879 году Эдисон запатентовал (US Patent 223898) первую лампочку накала. Потомки зафиксировали событие. Касаемо более ранних публикаций, авторство вызывает сомнение. Неизвестен подаривший миру коллекторный двигатель. Сэр Гемфри Дэви отказался брать патент на изобретенный безопасный фонарь для шахты, сделав изобретение общедоступным. Подобные прихоти создают немалую путаницу. Бессильны выяснить, кто первым придумал помещать нить накала внутрь стеклянной колбы, обеспечив работоспособность конструкции, используемой повсеместно.

Лампы накаливания выходят из моды

Лампа накаливания использует вторичный принцип производства света. Достигает высокой температуры нить. КПД устройств мал, большая часть энергии расходуется впустую. Современные нормы диктуют стране беречь энергию. В моде разрядные, светодиодные лампочки. Навсегда остались в памяти Гемфри Дэви, де ла Ру, де ла Рив, Эдисон, приложившие руку, потрудившиеся вырвать человечество из тьмы.

Обратите внимание, Чарльз Гаспар де ла Рив скончался в 1834 году. Следующей осенью прошла первая публичная демонстрация… Некто нашел записи погибшего исследователя? Вопрос разрешит время, ибо все тайное откроется. Читатели обратили внимание: неизвестная сила подталкивала Дэви попробовать использовать защитную колбу, помогая шахтерам. Сердце ученого оказалось чересчур большим увидеть явный намек. Нужной информацией англичанин обладал…