Разбирая строение лампы накаливания (рисунок 1, а ) мы обнаруживаем, что основной частью ее конструкции является тело накала 3 , которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6 , обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4 . Держатели посредством впайки устанавливают на стеклянном стержне 5 , именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б , состоит из электродов 6 , тарелочки 9 , и штенгеля 10 , представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8 , штабика, тарелочки и штенгеля образует лопатку 7 . Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11 , соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а ) и ее ножки (б )

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1 . Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2 , после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13 , крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12 .

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а - высоковольтной проекционной лампы; б - низковольтной проекционной лампы; в - обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а - в плоскости, перпендикулярной оси лампы; б - в плоскости, проходящей через ось лампы; 1 - кольцевая спираль; 2 - прямая биспираль; 3 - спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

Металлы T , °С Карбиды и их смеси T , °С Нитриды T , °С Бориды T , °С
Вольфрам
Рений
Тантал
Осмий
Молибден
Ниобий
Иридий
Цирконий
Платина
3410
3180
3014
3050
2620
2470
2410
1825
1769
4TaC +
+ HiC
4TaC +
+ ZrC
HfC
TaC
ZrC
NbC
TiC
WC
W2C
MoC
VnC
ScC
SiC
3927

3887
3877
3527
3427
3127
2867
2857
2687
2557
2377
2267

TaC +
+ TaN
HfN
TiC +
+ TiN
TaN
ZrN
TiN
BN
3373

3087
2977
2927
2727

HfB
ZrB
WB
3067
2987
2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10 -10 и 9,95×10 -8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 - 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10 -6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
1000
1400
1800
2200
2600
3000
3400
5,32 × 10 -35
2,51 × 10 -23
8,81 × 10 -17
1,24 × 10 -12
8,41 × 10 -10
9,95 × 10 -8
3,47 × 10 -6
24,93
37,19
50,05
63,48
77,49
92,04
107,02
0,0012
1,04
51,2
640
3640
13260
36000
0,0007
0,09
1,19
5,52
14,34
27,25
43,20
1005
1418
1823
2238
2660
3092
3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO 2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO 2 вместе со щелочными металлами - калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al 2 O 3 . Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10 -7 К -1 . Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10 -7 К -1 . Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10 -7 К -1 . Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10 -7 К -1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 - 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 - 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название "платинит". Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока ). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка . Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 . Однако не известны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000-2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Чем меньше температура тела накаливания, тем меньшая доля энергии , подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение , и тем более «красным» кажется излучение.

Для оценки физиологического качества светильников используется понятие цветовой температуры . При типичных для ламп накаливания температурах 2200-2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма (нарушение его синтеза негативно сказывается на здоровье).

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом - обычно аргоном . На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурный коэффициент сопротивления , что означает увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников , что экономически выгодно отличает их от газоразрядных люминесцентных ламп . Для нити накаливания осветительной лампы типично сопротивление в холодном состоянии в 10 раз меньше, чем в нагретом до рабочих температур.

Для изготовления обычной лампочки требуется как минимум 7 металлов .

Конструкция

Конструкции ламп весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы, могут применяться держатели тела накала различной конструкции. Крючки-держатели тела накала ламп накаливания (в том числе ламп накаливания общего назначения) изготовляются из молибдена . Лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. В настоящее время отказываются от применения предохранителей из-за их малой эффективности.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении через тело накала протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растёт) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Разновидности

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые
  • Ксенон-галогенные с отражателем ИК-излучения (так как большая часть излучения лампы приходится на ИК-диапазон, то отражение ИК-излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения , их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром около 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счёт особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы - разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первое число означает рабочее напряжение в вольтах, второе - силу тока в миллиамперах;
  • Фотолампа , перекальная лампа - разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400 К, по сравнению с 2700 К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
  • Проекционные лампы - для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы . В автомобиле - может быть у лампы переднего света одна нить для дальнего света, другая для ближнего, или, к примеру, одна нить для габаритного огня, другая для стоп-сигнала. Кроме того, такие лампы могут содержать экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей. В самолёте посадочно-рулёжная фара имеет основную нить, на которой лампа работает без внешнего охлаждения и дополнительную, включаемую вместе с основной, позволяя получить более мощный свет, но только при внешнем охлаждении - обдуве набегающим потоком воздуха. В звёздах Московского Кремля используются специально сконструированные двухнитевые лампы, обе нити включены параллельно.
  • Лампа-фара . Лампа сложной специальной конструкции, применяемая на подвижных объектах, фигурная колба которой выполнена в виде части корпуса фары с отражателем. Конструктивно содержит в себе нить(и) накала, отражатель, рассеиватель, элементы крепления, клеммы и т. д. Лампы-фары широко применяются в современной автомобильной технике и уже достаточно давно в авиации.
  • Малоинерционная лампа накаливания , лампа накаливания с тонкой нитью - использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа . Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала . С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы - основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов . Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесённым тонером . За счёт тепла, передающегося от вала, тонер расплавляется и впрессовывается в структуру бумаги.
  • Лампы специального спектра излучения . Применяются в разнообразной технике.

История изобретения

Перегоревшую лампу, колба которой сохранила целостность, а нить разрушилась лишь в одном месте, можно починить путём встряхиваний и поворотов, таких, чтобы концы нити вновь соединились. При прохождении тока концы нити могут сплавиться и лампа продолжит работу. При этом однако может выйти из строя (расплавиться/обломиться) предохранитель, входящий в состав лампы.

Последовательное подключение

При последовательном подключении ламп накаливания сильно снижается их световая эффективность и меняется цветовая температура. Данный способ используется с целью продлить срок службы ламп или получить освещение более низким накалом (например, при создании интерьера под старину). Для освещения хорошо использовать подключение по две лампы последовательно, но и три лампы могут дать достаточный свет. Данные виды освещения крайне неэффективны и скорее могут найти применение в качестве источников тепла, когда свет от ламп нежелателен (например, при обогреве лампами картофеля в погребе). Ниже приводятся параметры ламп накаливания при последовательном подключении.

Данные приводятся относительно стандартных ламп 95Вт со светоотдачей 13,8лм/Вт (1311лм) и температурой тела накала 2700°C (на практике может быть ниже) при которой пик излучения приходится на длину волны 975нм.

Две лампы 1870°C (жёлтый свет), 2,75лм/Вт, одна лампа 33,25Вт 91,4лм, две 66,5Вт 183лм. Пик излучения 1352нм. Срок службы 35-45 тыс. часов.

Три лампы 1480°C (жёлто-оранжевый свет), 0,845лм/Вт, одна лампа 18,07Вт 15,27лм, три 54,2Вт 45,8лм. Пик излучения 1653нм. Срок службы 250-350 тыс. часов (практически не ограничен).

Четыре лампы 1250°C (оранжевый свет), 0,195лм/Вт, одна лампа 11,74Вт 2,29лм, четыре 46,94Вт 9,15лм. Пик излучения 1903нм. Срок службы не ограничен.

Пять ламп 1090°C (красновато-оранжевый свет), ≈0,044лм/Вт, одна лампа 8,5Вт ≈0,374лм, пять 42,49Вт ≈1,87лм. Пик излучения 2126нм. Срок службы не ограничен.

Шесть ламп 960°C (красно-оранжевый свет), светоотдача в пределах ≈0,0075-0,011лм/Вт, одна лампа 6,52Вт, шесть 39,12Вт. Пик излучения 2350нм. Срок службы не ограничен.

Как видно из параметров, освещение возможно двумя или тремя лампами последовательно, если использовать подключение по четыре лампы, то для получения приемлемого света нужно использовать мощные промышленные лампы накаливания. Подключения по четыре, пять и шесть ламп последовательно удобны, когда лампы используются как обогреватели воздуха. Если лампы используются как замена свечного освещения, то подключение по две последовательно по цвету примерно соответствует пламени парафиновой свечи, а подключение по три близко по цвету к пламени масляной лампы (в сочетании с низким световым потоком данное подключение очень хорошо имитирует огонь). Четыре лампы последовательно удобны для создания света углей в камине, так как дают очень похожий свет. Следует заметить, что при слабом накале и малой мощности ламп они нагреваются достаточно сильно, так как из-за снижения температуры тела накала излучаемое инфракрасное излучение смещается в длинноволновую область и значительный его процент задерживается стеклом колбы, которое становится непрозрачным после 2700нм.

Также выпускаются лампы, специально предназначенные для включения последовательно. Например, на старых вагонах метро для освещения салона последовательно включалось по 15 ламп на напряжение 50 В (что в сумме даёт 750 В - напряжение на контактном рельсе); конструкция таких ламп включает специальное самозакорачивающее устройство, благодаря которому при перегорании одной лампы остальные продолжают гореть.

Преимущества и недостатки ламп накаливания

Преимущества

  • низкая цена
  • небольшие размеры
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • мгновенное зажигание и перезажигание
  • незаметность мерцания при работе на переменном токе (важно на предприятиях)
  • возможность использования регуляторов яркости
  • приятный и привычный в быту спектр; спектр излучения лампы накаливания определяется исключительно температурой рабочего тела и не зависит ни от каких иных условий, что следует из принципа её работы. Он не зависит от применяемых материалов и их чистоты, стабилен во времени и имеет стопроцентную предсказуемость и повторяемость. Это важно в том числе при больших инсталляциях и в светильниках из сотен ламп: нередко можно увидеть, когда при применении современных люминофорных или светодиодных ламп они имеют разный цветовой оттенок в пределах группы. Это уменьшает эстетическое совершенство инсталляций. При неисправности одной лампы часто приходится заменять всю группу целиком, но даже при установке ламп из одной партии встречается девиация спектра
  • высокий индекс цветопередачи , Ra 100
  • непрерывный спектр излучения
  • резкие тени (как при солнечном освещении) благодаря малому размеру излучающего тела
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
  • налаженность в массовом производстве
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • отсутствие пускорегулирующей аппаратуры
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • отсутствие гудения при работе на переменном токе (ввиду отсутствия электронного балласта, драйвера или преобразователя)
  • при работе не создаёт радиопомехи
  • устойчивость к электромагнитному импульсу
  • нечувствительность к ионизирующей радиации

Недостатки

Производство

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания .

23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» . Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года - мощностью 25 Вт и более.

Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против - соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона, и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб, а в случае вандализма (повреждение люминесцентной лампы из хулиганских побуждений) - возникает опасность загрязнения помещения парами ртути.

Современный рынок осветительных приборов сегодня представлен не только разнообразными светильниками, но и источниками света. Одними из самых старых лампочек современности являются лампы накаливания (ЛН).

Даже беря во внимание то, что сегодня существуют более совершенные источники света, лампы накаливания все еще широко используются людьми для освещения различного рода помещений. Здесь мы рассмотрим такой важный параметр данных ламп, как температура нагрева при работе, а также цветовая температура.

Особенности источника света

Лампы накаливания представляют собой самый первый источник электрического света, который был изобретен человеком. Данная продукция может иметь разную мощность (от 5 до 200 Вт). Но наиболее часто используются модели на 60 Вт.

Обратите внимание! Самый большой минус ламп накаливания – высокое потребление электроэнергии. Из-за этого с каждым годом уменьшается число ЛН, которые активно используются в качестве источника света.

Перед тем, как приступать к рассмотрению таких параметров, как температура нагрева и цветовая температура, необходимо разобраться в конструкционных особенностях подобных ламп, а также в принципе ее работы.
Лампы накаливания в ходе своей работы преобразует электрическую энергию, проходящую по вольфрамовой нити (спирали) в световую и тепловую.
На сегодняшний день излучение, по своей физической характеристике, делится на два типа:

Устройство лампы накаливания

  • тепловое;
  • люминесцентное.

Под тепловым, которое характерно для ламп накаливания, подразумевается световое излучение. Именно на тепловом излучении основано свечение электрической лампочки накаливания.
Лампы накаливания состоят из:

  • стеклянной колбы;
  • тугоплавкой вольфрамовой нити (часть спирали). Важный элемент всей лампы, так как при повреждении нити лампочка перестает светиться;
  • цоколя.

В процессе работы таких ламп происходит повышение t0 нити из-за прохождения через нее электрической энергии в виде тока. Чтобы избежать быстрого перегорания нити в спирали, из колбы выкачивают воздух.
Обратите внимание! В более продвинутых моделях ламп накаливания, коими является галогеновые лампочки, вместо вакуума в колбе закачан инертный газ.
Установка вольфрамовой нити происходит в спираль, которая закреплена на электродах. В спирали нить находится посередине. Электроды, к которым происходит установка спирали и вольфрамовой нити, соответственно, припаиваются к разным элементам: один к металлической гильзе цоколя, а второй – к металлической контактной пластине.
В результате такой конструкции электрической лампочки, ток, проходя через спираль, вызывает нагрев (повышение t0 внутри колбы) нити, так как он преодолевает ее сопротивление.

Принцип работы лампочки

Работающая лампа накаливания

Нагрев ЛН во время работы происходит из-за конструкционных особенностей источника света. Именно из-за сильного нагрева во время работы время эксплуатации ламп значительно уменьшается, что делает их сегодня не такими выгодными. При этом из-за нагрева нити происходит повышение t0 самой колбы.

Принцип работы ЛН основывается на преобразовании электрической энергии, которая проходит через нити спирали, в световое излучение. При этом температура разогретой нити может достигать 2600- 3000 оС.

Обратите внимание! Температура плавления для вольфрама, из которого изготовлены нити спирали, составляет 3200-3400 °С. Как видим, в норме температура нагрева нити не может привести к началу процесса плавления.

Спектр ламп при таком строении заметно отличается от спектра дневного света. Для такой лампы спектр излучаемого света будет характеризоваться преобладанием красных и желтых лучей.
Стоит отметить, что колбы у более современных моделей ЛН (галогеновых) не вакуумируются, а также не содержат в своем составе спиральной нити. Вместо нее внутрь колбы закачивают инертные газы (аргон, азот, криптон, ксенон и аргон). Такие конструкционные усовершенствования привели к тому, что температура нагрева колбы во время работы несколько уменьшилась.

Преимущества и недостатки источника света

Несмотря на то, что сегодня рынок источников света изобилует самыми разнообразными моделями, лампы накаливания на нем встречаются еще достаточно часто. Здесь можно найти изделия на различное количество Вт (от 5 до 200 Вт и выше). Самыми востребованными лампочками являются от 20 до 60 Вт, а также 100 Вт.

Ассортимент выбора

ЛН продолжают достаточно широко использоваться потому, что у них имеются свои преимущества:

  • при включении зажигание света происходит практически мгновенно;
  • небольшие габариты;
  • низкая стоимость;
  • модели, внутри колбы которых имеется только вакуум, являются экологически чистой продукцией.

Именно такие достоинства и обусловили то, что ЛН еще являются достаточно востребованными в современном мире. В домах и на производстве сегодня легко можно встретить представителей данной осветительной продукции на 60 Вт и выше.
Обратите внимание! Большой процент использования ЛН относится к промышленности. Зачастую здесь используются мощные модели (200 Вт).
Но лампы накаливания имеют и достаточно внушительный перечень недостатков, к которым можно отнести:

  • наличие слепящей яркости света, исходящего от ламп в процессе работы. В результате этого требуется использование специальных защитных экранов;
  • во время работы наблюдается нагревание нити, а также самой колбы. Из-за сильного нагрева колбы при попадании на ее поверхность даже незначительного количества воды, возможен взрыв. Причем нагревание колбы происходит у всех лампочек (хоть на 60 Вт, хоть ниже или выше);

Обратите внимание! Увеличение нагрева колбы еще несет в себе определенную степень опасности травмироваться. Повышенная температура стеклянной колбы, при прикосновении к ней незащищенными участками кожи, может вызвать ожог. Поэтому такие лампы не стоит ставить в те светильники, к которым может легко дотянуться ребенок. Кроме этого повреждение стеклянной колбы может вызвать порезы или спровоцировать другие травмы.

Накал вольфрамовой нити

  • высокое потребление электроэнергии;
  • при выходе из строя не поддаются ремонту;
  • низкий срок эксплуатации. Лампы накаливания быстро выходят из строя по причине того, что в момент включения или выключения света нить спирали может повредиться из-за частого нагрева.

Как видим, использование ЛН несет в себя гораздо больше минусов, чем плюсов. Самыми главными недостатками лап накаливания считается нагрев из-за повышения температуры внутри колбы, а также высокое потребление электроэнергии. Причем это касается всех вариантов ламп с мощностью от 5 до 60 Вт и выше.

Важные параметры оценки

Одним из наиболее важных параметров работы ЛН является световой коэффициент. Этот параметр имеет вид отношения мощности излучения видимого спектра и мощности потребленной электроэнергии. Для данной продукции это достаточно малая величина, которая не превышает 4%. То есть, для ЛН характерна низкая светоотдача.
К другим важным параметрам работы можно отнести:

  • световой поток;
  • цветовая t0 или цвет свечения;
  • мощность;
  • срок службы.

Рассмотрим первые два параметра, так как со сроком службы мы разобрались в предыдущем пункте.

Световой поток

Световой поток представляет собой физическую величину, которая определяет количество световой мощности в конкретном потоке излучения света. Кроме этого здесь имеется еще один важный аспект, как световая отдача. Она определяет для лампы отношение излучаемого лампочкой светового потока к мощности, которую она потребляет. Световая отдача измеряется в лм/Вт.

Обратите внимание! Световая отдача служит показателем экономичности и эффективности источников света.

Таблица светового потока и световой отдачи ламп накаливания

Как видим, для нашего источника света вышеперечисленные величины находятся на низком уровне, что свидетельствует об их небольшой эффективности.

Цвет свечения лампочек

Цветовая температура (t0) также является важным показателем.
Цветовая t0 представляет собой характеристику хода интенсивности светового излучения лампочки и является функцией длины волны, определенной для оптического диапазона. Данный параметр измеряется в кельвинах (К).

Цветовая температура для лампы накаливания

Стоит отметить, что цветовая температура для ЛН находится примерно на уровне 2700 К (для источников света с мощностью от 5 до 60 Вт и выше). Цветовая t0 ЛН находится в красной и тепловой оттеночной области видимого спектра.
Цветовая t0 полностью соответствует степени нагревания вольфрамовой нити, что не дает возможность ЛН быстро выйти из строя.

Обратите внимание! Для других источников света (например, светодиодные лампочки) цветовая температура не отображает степень их прогрева. При параметре нагрева ЛН в 2700 К светодиод прогреется всего лишь на 80ºС.

Таким образом, чем больше будет мощность ЛН (от 5 до 60 Вт и выше), тем больше будет происходить нагревание вольфрамовой нити и самой колбы. Соответственно, тем больше будет цветовая t0. Ниже приведена таблица, по которой можно сравнить эффективность и потребление мощности разных видов лампочек. В качестве группы контроля, с которой ведется сравнение, здесь взяты ЛН мощностью от 20 до 60 и до 200 Вт.

Сравнительная таблица мощностей разных источников света

Как видим, лампы накаливания по данному параметру значительно проигрывают в плане потребления мощности другим источникам света.

Светотехника и цвет свечения

В светотехнике важнейшим параметром для источника света является его цветовая t0. Благодаря ей можно определить цветовую тональность и цветность источников света.

Варианты цветовой температуры

Цветовая t0 лампочек определяется цветовой тональностью и бывает трех видов:

  • холодной (от 5000 до 120000К);
  • нейтральной (от 4000 до 50000К);
  • теплой (от 1850 до 20000К). Его дает стеариновая свеча.

Обратите внимание! Рассматривая цветовую температуру ЛН, следует помнить, что она не совпадает с реальной тепловой температурой изделия, которая ощущается при прикосновении к ней рукой.

Для ЛН цветовая температура располагается в диапазоне от 2200 до 30000К. Поэтому они могут иметь излучение, близкое к ультрафиолетовому.

Заключение

Для любых типов источников света важным параметром оценки является цветовая температура. При этом для ЛН она служит отражением степени нагрева изделия в процессе его работы. Такие лампочки характеризуются повышением температуры нагрева в ходе функционирования, что служит явным недостатком, которого лишены современные источники света, такие как светодиодные лампочки. Поэтому сегодня многие отдают свое предпочтение люминесцентным и светодиодным лампочкам, а лампы накаливания постепенно уходят в прошлое.

Среди всех электроустановочных и электромонтажных изделий осветительная аппаратура имеет наиболее богатый ассортимент. Это происходит потому, что элементы освещения несут в себе не только сугубо технические характеристики, но и элементы дизайна. Возможности современных ламп и светильников, их конструкторское разнообразие настолько велики, что немудрено растеряться. Например, существует целый класс светильников, предназначенных исключительно для гипсокартонных потолков.

Многочисленные виды ламп имеют различную природу света и эксплуатируются в неодинаковых условиях. Чтобы разобраться, какого типа лампа должна стоять в том или ином месте и каковы условия ее подключения, необходимо вкратце изучить основные виды осветительной аппаратуры.

У всех ламп есть одна общая часть: цоколь, при помощи которого они соединяются с проводами освещения. Это касается тех ламп, в которых есть цоколь с резьбой для крепления в патроне. Размеры цоколя и патрона имеют строгую классификацию. Необходимо знать, что в бытовых условиях применяют лампы с 3 видами цоколей: маленьким, средним и большим. На техническом языке это означает Е14, Е27 и Е40. Цоколь, или патрон, Е14 часто называют «миньон» (в gер. с фр. - «маленький»).

Самый распространенным размер - Е27. Е40 используют при уличном освещении. Лампы этой маркировки имеют мощность 300, 500 и 1000 Вт. Цифры в названии обозначают диаметр цоколя в миллиметрах. Помимо цоколей, которые вкручиваются в патрон при помощи резьбы, есть и другие виды. Они штырькового типа и называются G-цоколями. Используются в компактных люминесцентных и галогенных лампах для экономии места. При помощи 2 или 4 штырьков лампа крепится в гнезде светильника. Видов G-цоколей много. Основные из них: G5, G9, 2G10, 2G11, G23 и R7s-7. На светильниках и лампах всегда указывается информация о цоколе. При выборе лампы необходимо сравнивать эти данные.

Мощность лампы - одна из важнейших характеристик. На баллоне или цоколе производитель всегда указывает мощность, от которой зависит светимость лампы . Это не уровень света, который она излучает. В лампах различной природы света мощность имеет совершенно несхожее значение.

Например, энергосберегающая лампа при указанной мощности 5 Вт будет светить не хуже лампы накаливания в 60 Вт. То же касается и люминесцентных ламп . Светимость лампы исчисляется в люменах. Как правило, это не указывается, так что при выборе лампы необходимо ориентироваться на советы продавцов.

Светоотдача обозначает, что на 1 Вт мощности лампа дает столько-то люмен света. Очевидно, что энергосберегающая компактная люминесцентная лампа в 4–9 раз экономичнее, нежели накаливания. Можно легко подсчитать, что стандартная лампа в 60 Вт дает примерно 600 лм, тогда как компактная имеет такое же значение при мощности 10–11 Вт. Настолько же она будет экономичнее по энергопотреблению.

Лампы накаливания

(ЛОН) - самый первый источник электрического света, который появился в домашнем обиходе. Она была изобретена еще в середине 19 в., и хотя с того времени претерпела немало реконструкций, сущность осталась без изменений. Любая лампа накаливания состоит из вакуумного стеклянного баллона, цоколя, на котором располагаются контакты и предохранитель, и нити накаливания, излучающей свет.

Спираль накаливания сделана из вольфрамовых сплавов, которые легко выдерживают рабочую температуру горения +3200 °C. Чтобы нить мгновенно не перегорела, в современных лампах накачивают в баллон какой-нибудь инертный газ, например аргон.

Принцип работы лампы очень прост. При пропускании тока через проводник малого сечения и низкой проводимости часть энергии уходит на разогрев спирали-проводника, отчего тот начинает светиться в видимом свете. Несмотря на столь простое устройство, видов ЛОН существует огромное множество. Они различаются по форме и размерам.

Декоративные лампы (свечи): баллон имеет вытянутую форму, стилизованную под обычную свечу. Как правило, используются в небольших светильниках и бра.

Окрашенные лампы : стекла баллонов имеют различный цвет с декоративными целями.

Зеркальными лампами называют лампы, часть стеклянного баллона которых покрыта отражающим составом для направления света компактным пучком. Такие лампы чаще всего используют в потолочных светильниках, чтобы направлять свет вниз, не освещая потолка.

Лампы местного освещения работают под напряжением 12, 24 и 36 В. Они потребляют немного энергии, но и освещение соответствующее. Применяются в ручных фонарях, аварийном освещении и т. д. ЛОН по-прежнему остаются в первых рядах источника света, несмотря на некоторые недостатки. Их минусом является очень низкий КПД - не более 2–3 % от потребляемой энергии. Все остальное уходит в тепло.

Второй минус заключается в том, что ЛОН небезопасны с противопожарной точки зрения. Например, обычная газета, если ее положить на лампочку в 100 Вт, вспыхивает примерно через 20 мин. Надо ли говорить, что в некоторых местах ЛОН нельзя эксплуатировать, например в маленьких абажурах из пластика или дерева. Кроме того, такие лампы недолговечны. Срок службы ЛОН составляет примерно 500–1000 ч. К числу плюсов можно отнести дешевизну и простоту монтажа. ЛОН не требуют каких-либо дополнительных устройств для работы, подобно люминесцентным.

Галогенные лампы

Галогенные лампы мало чем отличаются от ламп накаливания, принцип работы тот же. Единственная разница между ними - это газовый состав в баллоне. В данных лампах к инертному газу примешивают йод или бром. В результате становится возможным повышение температуры нити накаливания и уменьшение испарения вольфрама.

Именно поэтому галогенные лампы можно делать более компактными, а срок их службы повышается в 2–3 раза. Однако температура нагревания стекла повышается весьма значительно, поэтому галогенные лампы делают из кварцевого материала. Они не терпят загрязнений на колбе. Прикасаться незащищенной рукой к баллону нельзя - лампа перегорит очень быстро.

Линейные галогенные лампы используются в переносных или стационарных прожекторах. В них часто бывают датчики движения. Такие лампы используют в гипсокартонных конструкциях.

Компактные осветительные устройства имеют зеркальное покрытие.

К минусам галогенных ламп можно отнести чувствительность к перепадам напряжения. Если оно «играет», лучше приобрести специальный трансформатор, выравнивающий силу тока.

Люминесцентные лампы

Принцип работы люминесцентных ламп серьезно отличается от ЛОН. Вместо вольфрамовой нити в стеклянной колбе такой лампы горят пары ртути под воздействием электрического тока. Свет газового разряда практически невидим, поскольку излучается в ультрафиолете. Последний заставляет светиться люминофор, которым покрыты стенки трубки. Этот свет мы и видим. Внешне и по способу соединения люминесцентные лампы также сильно отличаются от ЛОН. Вместо резьбового патрона с обеих сторон трубки есть два штырька, закрепляющихся следующим образом: их надо вставить в специальный патрон и повернуть в нем.

Люминесцентные лампы имеют низкую рабочую температуру. К их поверхности можно без опаски прислонять ладонь, поэтому они устанавливаются где угодно. Большая поверхность свечения создает ровный рассеянный свет. Именно поэтому их еще называют лампами дневного света . Кроме того, варьируя состав люминофора, можно изменять цвет светового излучения, делая его более приемлемым для человеческих глаз. По сроку службы люминесцентные лампы превосходят лампы накаливания почти в 10 раз.

Минусом люминесцентных ламп является невозможность прямого подключения к электросети. Нельзя просто накинуть 2 провода на торцы лампы и воткнуть вилку в розетку. Для ее включения используются специальные балласты. Связано это с физической природой свечения ламп. Наряду с электронными балластами используются стартеры, которые как бы поджигают лампу в момент включения. Большинство светильников под люминесцентные лампы оборудованы встроенными механизмами свечения наподобие электронных пускорегулирующих аппаратов (ПРА) или дросселями.

Маркировка люминесцентных ламп не похожа на простые обозначения ЛОН, имеющие только показатель мощности в ваттах.

Для рассматриваемых ламп она следующая:

  • ЛБ - белый свет;
  • ЛД - дневной свет;
  • ЛЕ - естественный свет;
  • ЛХБ - холодный свет;
  • ЛТБ - теплый свет.

Цифры, идущие за буквенной маркировкой, обозначают: первая цифра - степень цветопередачи, вторая и третья - температуру свечения. Чем выше степень цветопередачи, тем более естественно освещение для человеческого глаза. Рассмотрим пример, относящийся к температуре свечения: лампа с маркировкой ЛБ840 означает, что эта температура равна 4000 К, цвет белый, дневной.

Следующие значения расшифровывают маркировку ламп:

  • 2700 К - сверхтеплый белый,
  • 3000 К - теплый белый,
  • 4000 К - естественный белый или белый,
  • более 5000 К - холодный белый (дневной).

В последнее время появление на рынке компактных люминесцентных энергосберегающих ламп произвело настоящую революцию в светотехнике. Были устранены главные недостатки люминесцентных ламп - их громоздкие размеры и невозможность использовать обычные нарезные патроны. ПРА были вмонтированы в ламповый цоколь, а длинная трубка свернулась в компактную спираль.

Теперь разнообразие видов энергосберегающих ламп очень велико. Они различаются не только по своей мощности, но и по форме разрядных трубок. Плюсы такой лампы очевидны: нет нужды устанавливать электронный балласт для запуска, пользуясь специальными светильниками.

Экономичная люминесцентная лампа пришла на смену обычной лампе накаливания. Однако у нее, как и у всех люминесцентных ламп, есть недостатки.

Минусов у люминесцентных ламп несколько:

  • такие лампы плохо работают при низких температурах, а при –10 °C и ниже начинают светить тускло;
  • долгое время запуска - от нескольких секунд до нескольких минут;
  • слышен низкочастотный гул от электронного балласта;
  • не работают вместе со светорегуляторами;
  • сравнительно дорогие;
  • не любят частого включения и выключения;
  • в состав лампы входят вредные ртутные соединения, поэтому она требует специальной утилизации;
  • если использовать в выключателе индикаторы подсветки, данная осветительная аппаратура начинает мерцать.

Как бы ни старались производители, свет люминесцентных ламп пока не очень похож на естественный и режет глаза. Кроме энергосберегающих ламп с ПРА существует множество разновидностей без встроенного электронного балласта. Они имеют совершенно другие виды цоколя.

Принцип свечения дуговой ртутной лампы высокого давления (ДРЛ) - дуговой разряд в парах ртути. Такие лампы обладают высокой светоотдачей - на 1 Вт приходится 50–60 лм. Запускаются при помощи ПРА. Недостатком является спектр свечения - их свет холоден и резок. Лампы ДРЛ чаще всего используются для уличного освещения в светильниках типа «кобра».

Светодиодные лампы

Светодиодные лампы - этот продукт высокой технологии впервые был сконструирован в 1962 г. С той поры светодиодные лампы стали постепенно внедряться на рынок осветительной продукции. Светодиод по принципу действия - это самый обычный полупроводник, у которого часть энергии в переходе p-n сбрасывается в виде фотонов, то есть видимого света. Такие лампы имеют просто потрясающие характеристики.

Они десятикратно превосходят ЛОН по всем показаниям:

  • долговечности,
  • светоотдаче,
  • экономичности,
  • прочности и т. д.

Есть у них лишь одно «но» - это цена. Она приблизительно в 100 раз превосходит цену обычной лампы накаливания. Однако работа над этими необычными источниками света продолжается, и можно ожидать, что вскоре мы будем радоваться изобретению более дешевого, нежели его предшественники, образца.

Примечание! Ввиду необычных физических характеристик светодиодов из них можно изготавливать настоящие композиции, например в виде звездного неба на потолке комнаты. Это безопасно и не требует больших затрат энергии.

Ни для кого не секрет, что даже сейчас, с появлением множества новых энергосберегающих источников света, лампа накаливания (еще ее называют «лампочка Ильича» или вольфрамовая лампа), остается очень востребованной, и многие пока не готовы от нее отказаться. Скорее всего, пройдет еще немного времени и этот световой прибор практически уйдет с рынка электротехники, но, естественно, забыт он не будет. Ведь по сути, с открытием обычной лампы накаливания началась новая эра в освещении.

Из чего состоит вольфрамовая лампочка?

Конструкция лампы накаливания с вольфрамовой нитью очень проста. Она состоит из:

  • колбы, т. е. самой стеклянной сферы, либо вакуумированной, либо наполненной газом;
  • тела накала (нить накаливания) – спирали из сплава вольфрама;
  • двух электродов, по которым на спираль подается напряжение;
  • крючков – держателей вольфрамовой нити, выполненных из молибдена;
  • ножки лампочки;
  • внешнего звена токоввода, служащего предохранителем;
  • корпуса цоколя;
  • стеклянного изолятора цоколя;
  • контакта донышка цоколя.

Принцип работы лампы накаливания также несложен. Свет вырабатывается по причине того, что вольфрамовая нить нагревается от подаваемого на нее напряжения. Подобное свечение, хоть и в более малых объемах, можно увидеть при работе электрической плитки с открытым нагревательным элементом из нихрома. Свет от спирали выделяется очень слабый, но на этом примере становится ясно, как работает лампа накаливания.

Кроме привычной формы, эти световые приборы могут быть и декоративными, в виде свечи, капли, цилиндра или шара. Так как свет от вольфрама всегда одного цвета, производители выпускают такие осветительные приборы с различными, иногда окрашенными стеклами.

Интересны в работе лампочки с нитями накаливания с зеркальным покрытием. Принцип действия лампы накаливания можно сравнить с точечными светильниками, так как освещают они направленно определенную площадь.

Достоинства

Конечно, основные преимущества ламп накаливания – это минимальная сложность при их изготовлении. Отсюда, естественно, и низкая цена, ведь на сегодняшний день более простого электрического прибора и представить нельзя. Та же история и с включением такого элемента в сеть. Для этого не нужно устанавливать какое-то дополнительное оборудование, достаточно простейшего патрона.

В некоторых случаях даже при его отсутствии люди подключают лампы накаливания, на скорую руку соорудив патрон из дерева, пластика, либо вовсе соединяя лампу с проводом при помощи изоляционной ленты. Конечно, такие подключения в форс-мажорных обстоятельствах имеют право на существование, но они небезопасны в смысле пожарной и электрозащиты (необходимо следить, чтобы основание не нагрелось).

Также лампочки с нитью накаливания больших мощностей (150 Вт) очень широко применяются в освещении теплиц. Ведь помимо того, что они дают свет, в результате накаливания вольфрамовой нити лампы сильно нагреваются. К тому же освещение от них наиболее близко к солнечному свету, современная лампочка на светодиодах или люминесцентная энергосберегающая этим похвастаться не могут. По этой же причине лампа накаливания имеет преимущество и в вопросе влияния на зрение человека.

Недостатки

К недостаткам ламп накаливания можно отнести недолговечность работы таких приборов, это напрямую зависит от такого параметра, как напряжение в сети. Если повысить ток, то спираль начнет быстрее изнашиваться, что и приведет к перегоранию в самом тонком месте. Ну а если же понизить напряжение, то освещение станет намного слабее, хотя, конечно, это увеличит срок службы лампы.

К основным недостаткам ламп накаливания можно также отнести и негативное действие на нить накала резких скачков напряжения. Но от этого недостатка можно избавиться путем установки вводного стабилизатора. Конечно, остается вопрос с включением освещения. Ведь в момент подачи напряжения нить накала холодная, а значит, сопротивление ее ниже. Решается эта проблема установкой простейшего поворотного диммера. Тогда с поворотом рукоятки нить будет накаливаться плавнее, (т. е. будет отсутствовать краткая резкая подача напряжения), а значит и прослужит она много дольше.

Но все же главным минусом этих приборов, конечно же, можно считать их низкий КПД, а именно то, что работающая лампа расходует подавляющую части энергии на тепло, в результате чего начинает сильно нагреваться. Эти потери составляют до 95%, но такой уж алгоритм работы вольфрамовых лампочек. Так что при приобретении этого светового прибора следует учитывать все преимущества и недостатки лампы накаливания.

Виды ламп накаливания

Лампочки с использованием вольфрамовой нити могут быть не только вакуумными. Устройство лампы накаливания различает несколько видов подобных осветительных приборов, каждый из которых используется в определенных отраслях. Они могут быть:

  • вакуумными, т. е. самыми простыми;
  • аргоновыми, либо азотно-аргоновыми;
  • криптоновыми, которые светят на 13–15% сильнее аргоновых;
  • ксеноновыми (чаще применяемыми в последнее время в фарах автомобилей и светящими в 2 раза ярче аргоновых);
  • галогенными – колба в лампе накаливания наполнена галогеном брома или йода. Свет в 3 раза ярче, чем у аргоновой, но эти лампы не терпят снижения напряжения и внешнего загрязнения стекла колбы;
  • галогенными с двойной колбой – с повышенной эффективностью работы галогенов по сбережению вольфрама в нити накаливания;
  • ксенон-галогенными (еще более яркими) – они наполнены помимо галогенов йода или брома еще и ксеноном, т. к. от того, какой газ находится в колбе, напрямую зависит то, сколько градусов составит нагрев лампы а, следовательно, зависит и ее яркость.

Коэффициент полезного действия

Как уже говорилось, ввиду того, что строение лампы накаливания подразумевает разогрев спирали, 95% подающейся на осветительный прибор энергии уходит в тепло, выделяемое при ее работе, и лишь 5% идет непосредственно на освещение. Это тепло является инфракрасным излучением, которое глаза человека не воспринимают. Потому коэффициент полезного действия таких осветительных приборов при повышении температуры лампы накаливания до 3 400 К составит 15%. При снижении ее до 2 700 К (что соответствует температуре работы лампы в 60 Ватт) КПД ламп составит уже 5%. Получается, что с повышением температурных режимов повышается и КПД, но при этом значительно падает срок службы. Значит, при условии понижения тока падает и коэффициент полезного действия, зато долговечность прибора возрастет в тысячи раз. Такой способ увеличения срока службы ламп часто используется в подъездах многоквартирных домов, где питание на источники подается последовательно на два осветительных прибора, либо к лампе последовательно подключается диод, что позволяет понизить ток сети.

Что выбрать: светодиоды или вольфрамовые лампы?

Это вопрос, ответ на который каждый находит для себя сам, оценив для себя лампы накаливания, их достоинства и недостатки. Советов здесь быть не может. С одной стороны, светодиоды потребляют во много раз меньше электроэнергии и более долговечны в работе, чего нельзя сказать о «лампочках Ильича», а с другой – лампы накаливания оказывают более щадящее действие на зрение человека.

И все же есть статистика, а согласно ей, продажи светодиодов и энергосберегающих ламп в последнее время возросли более чем на 90%, т. к. человеку свойственно идти в ногу с прогрессом, а значит, недалеко время, когда лампы накаливания уйдут в прошлое.