Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении между ее электродами. Несмотря на то, что трубка находилась в черном ящике, Рентген обратил внимание, что флуоресцентный экран, случайно находившийся рядом, всякий раз светился, когда действовала трубка. Трубка оказалась источником излучения, которое могло проникать через бумагу, дерево, стекло и даже пластинку алюминия толщиной в полтора сантиметра.

Рентген определил, что газоразрядная трубка является источником нового вида невидимого излучения, обладающего большой проникающей способностью. Ученый не мог определить было ли это излучение потоком частиц или волн, и он решил дать ему название X-лучи. В последствие их назвали рентгеновскими лучами

Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Длина волны X-лучей колеблется от 70 нм до 10 -5 нм . Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм ), называются мягкими . Длина волны 1 - 10нм характеризует жесткие X-лучи. Они обладают огромной проникающей способностью.

Получение рентгеновского излучения

Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет собой вакуумизированный стеклянный баллон с расположенными в нем катодом и анодом. Разность потенциалов между катодом и анодом (антикатодом), достигает несколько сотен киловольт. Катод представляет собой вольфрамовую нить, подогреваемую электрическим током. Это приводит к испусканию катодом электронов в результате термоэлектронной эмиссии. Электроны ускоряются электрическим полем в рентгеновской трубке. Поскольку в трубке очень небольшое число молекул газа, то электроны по пути к аноду практически не теряют своей энергии. Они достигают анода с очень большой скоростью.

Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода. Большая часть энергии электронов рассеивается в виде тепла. Поэтому аноде необходимо искусственно охлаждать. Анод в рентгеновской трубке должен быть сделан из металла, имеющего высокую температуру плавления, например, из вольфрама.

Часть энергии, не рассеивающая в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи). Таким образом, рентгеновские лучи являются результатом бомбардировки электронами вещества анода. Есть два типа рентгеновского излучения: тормозное и характеристическое.

Тормозное рентгеновское излучение

Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В результате в энергию рентгеновского излучения переходят различные части их кинетической энергии.

Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Рентгеновские лучи не могут иметь энергию большую, чем кинетическая энергия образующих их электронов. Наименьшая длина волны рентгеновского излучения соответствует максимальной кинетической энергии тормозящихся электронов. Чем больше разность потенциалов в рентгеновской трубке, тем меньшие длины волны рентгеновского излучения можно получить.

Характеристическое рентгеновское излучение

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр . Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атомов и выбивает один из их электронов. В результате появляется свободное место, которое может быть заполнено другим электроном, спускающимся с одной из верхних атомных орбиталей. Такой переход электрона с более высокого на более низкий энергетический уровень вызывает рентгеновское излучение определенной дискретной длины волны. Поэтому характеристическое рентгеновское излучение имеет линейчатый спектр . Частота линий характеристического излучения полностью зависит от структуры электронных орбиталей атомов анода.

Линии спектра характеристического излучения разных химических элементов имеют одинаковый вид, поскольку структура их внутренних электронных орбитальных идентична. Но длина их волны и частота, благодаря энергетическим различиям между внутренними орбиталями тяжелых и легких атомов.

Частота линий спектра характеристического рентгеновского излучения изменяется в соответствие с атомным номером металла и определяется уравнением Мозли: v 1/2 =A (Z-B ), где Z - атомный номер химического элемента, A и B - константы.

Первичные физические механизмы взаимодействия рентгеновского излучения с веществом

Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма:

1. Когерентное рассеяние . Эта форма взаимодействия происходит, когда фотоны рентгеновских лучей имеют меньшую энергию, чем энергия связи электронов с ядром атома. В таком случае, энергия фотона оказывается не достаточной для освобождения электронов из атомов вещества. Фотон не поглощается атомом, но изменяет направление распространения. При этом длина волны рентгеновского излучения остается неизменной.

2. Фотоэлектрический эффект (фотоэффект) . Когда фотон рентгеновского излучения достигает атома вещества, он может выбить один из электронов. Это происходит в том случае, если энергия фотона превышает энергию связи электрона с ядром. При этом фотон поглощается, а электрон высвобождается из атома. Если фотон несет большую энергию, чем необходимо для высвобождения электрона, он передаст оставшуюся энергию освобожденному электрону в форме кинетической энергии. Этот феномен, называемый фотоэлектрическим эффектом, происходит при поглощении относительно низкоэнергетического рентгеновского излучения.

Атом, который теряет один из своих электронов, становится положительным ионом. Продолжительность существования свободных электронов очень коротка. Они поглощаются нейтральными атомами, которые превращаются при этом в отрицательные ионы. Результатом фотоэлектрического эффекта является интенсивная ионизация вещества.

Если энергия фотона рентгеновского излучения меньше, чем энергия ионизации атомов, то атомы переходят в возбужденное состояние, но не ионизируются.

3. Некогерентное рассеяние (эффект Комптона) . Этот эффект обнаружен американским физиком Комптоном. Он происходит, если вещество поглощает рентгеновские лучи малой длины волны. Энергия фотонов таких рентгеновских лучей всегда больше, чем энергия ионизации атомов вещества. Эффект Комптона является результатом взаимодействия высокоэнергетического фотона рентгеновских лучей с одним из электронов внешней оболочки атома, который имеет сравнительно слабую связь с атомным ядром.

Высокоэнергетический фотон передает электрону некоторую часть своей энергии. Возбужденный электрон высвобождается из атома. Оставшаяся часть энергии первоначального фотона излучается в виде фотона рентгеновского излучения большей длины волны под некоторым углом к направлению движения первичного фотона. Вторичный фотон может ионизировать другой атом и т.д. Эти изменения направления и длины волны рентгеновских лучей известны как эффект Комптона.

Некоторые эффекты взаимодействия рентгеновского излучения с веществом

Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок рентгеновских лучей направить на непрозрачные объекты, то можно наблюдать как лучи пройдут сквозь объект, поставив экран, покрытый флюоресцирующим веществом.

Флуоресцентный экран можно заменить фотографической пленкой. Рентгеновские лучи оказывают на фотографическую эмульсию такое же действие, как и свет. Оба метода используются в практической медицине.

Другим важным эффектом рентгеновского излучения является их ионизирующая способность. Это зависит от их длины волны и энергии. Этот эффект обеспечивает метод для измерения интенсивности рентгеновского излучения. Когда рентгеновские лучи проходят через ионизационную камеру, возникает электрический ток, величина которого пропорциональна интенсивности рентгеновского излучения.

Поглощение рентгеновского излучения веществом

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e -μd , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d - толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

τ = kρZ 3 λ 3 , где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z - атомный номер элемента, λ - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.

Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Применение рентгеновского излучения в медицине

Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность, одно из основных свойств рентгеновского излучения . В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей (рентгенодиагностика).

Рентгеноскопия . Рентгеновский прибор состоит из источника рентгеновских лучей (рентгеновской трубки) и флуоресцирующего экрана. После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Например, врач непосредственно может пронаблюдать движения легких, прохождение контрастного вещества по желудочно-кишечному тракту. Недостатки этого метода - недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры.

Флюорография . Этот метод состоит в получении фотографии с изображением части тела пациента. Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения.

Рентгенография. (Радиография рентгеновских лучей). Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Фотографии делаются обычно в двух перпендикулярных плоскостях. Этот метод имеет некоторые преимущества. Рентгеновские фотографии содержат больше деталей, чем изображение на флуоресцентном экране, и потому они являются более информативными. Они могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии.

Компьютерная рентгеновская томография . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.

Первое поколение компьютерных томографов (КT) включает специальную рентгеновскую трубку, которая прикреплена к цилиндрической раме. На пациента направляют тонкий пучок рентгеновских лучей. Два детектора рентгеновских лучей прикреплены к противоположной стороне рамы. Пациент находится в центре рамы, которая может вращаться на 180 0 вокруг его тела.

Рентгеновский луч проходит через неподвижный объект. Детекторы получают и записывают показатели поглощения различных тканей. Записи делают 160 раз, пока рентгеновская трубка перемещается линейно вдоль сканируемой плоскости. Затем рама поворачивается на 1 0 , и процедура повторяется. Запись продолжается, пока рама не повернется на 180 0 . Каждый детектор записывает 28800 кадров (180x160) в течение исследования. Информация обрабатывается компьютером, и посредством специальной компьютерной программы формируется изображение выбранного слоя.

Второе поколение КT использует несколько пучков рентгеновских лучей и до 30 их детекторов. Это дает возможность ускорить процесс исследования до 18 секунд.

В третьем поколении КT используется новый принцип. Широкий пучок рентгеновских лучей в форме веера перекрывает исследуемый объект, и прошедшее сквозь тело рентгеновское излучение записывается несколькими сотнями детекторов. Время, необходимое для исследования, сокращается до 5-6 секунд.

КТ имеет множество преимуществ по сравнению с более ранними методами рентгенодиагностики. Она характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.

Испускаются при участии электронов, в отличие от гамма-излучения, которое является ядерным. Искусственно рентгеновское излучение создается путем сильного ускорения заряженных частиц и путем перехода электронов с одного энергетического уровня на другой с высвобождением большого количества энергии. Устройства, на которых можно получить - это рентгеновские трубки и ускорители заряженных частиц. Естественными источниками его являются радиоактивно нестабильные атомы и космические объекты.

История открытия

Оно было сделано в ноябре 1895 года Рентгеном — немецким ученым, который обнаружил эффект флуоресценции платино-цианистого бария во время работы катодолучевой трубки. Он описал характеристики этих лучей довольно подробно, включая способность проникать сквозь живые ткани. Они были названы ученым икс-лучами (X-rays), название "рентгеновские" прижилось в России позднее.

Чем характеризуется этот вид излучения

Логично, что особенности данного излучения обусловлены его природой. Электромагнитная волна — вот что такое рентгеновское излучение. Свойства его следующие:


Рентгеновское излучение - вред

Разумеется, в момент открытия и долгие годы после того никто не представлял себе, насколько оно опасно.

К тому же, примитивные устройства, продуцирующие эти электромагнитные волны, в силу незащищенной конструкции создавали высокие дозы. Правда, предположения об опасности для человека этого излучения ученые выдвигали и тогда. Проходя сквозь живые ткани, рентгеновское излучение оказывает биологическое действие на них. Основным влиянием является ионизация атомов веществ, из которых состоят ткани. Самым опасным этот эффект становится по отношению к ДНК живой клетки. Последствиями воздействия рентгеновских лучей становятся мутации, опухоли, лучевые ожоги и лучевая болезнь.

Где применяются икс-лучи

  1. Медицина. Рентгенодиагностика — “просвечивание” живых организмов. Рентгенотерапия — воздействие на опухолевые клетки.
  2. Наука. Кристаллография, химия и биохимия используют их для выявления строения вещества.
  3. Промышленность. Выявление дефектов металлических деталей.
  4. Безопасность. Рентгеновское оборудование применяют для обнаружения опасных предметов в багаже в аэропортах и других местах.

Основные свойства рентгеновского излучения

1. Большая проникающая и ионизирующая способность.

2. Не отклоняются электрическим и магнитным полем.

3. Обладают фотохимическим действием.

4. Вызывают свечение веществ.

5. Отражение, преломление и дифракция как у видимого излучения.

6. Оказывают биологическое действие на живые клетки.

1. Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z³λ³, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах - т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.

В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения - за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ). Однако при другом подходе, когда "ренгеновским" называется излучение, возникшее при взаимодействии электрона и ядра или только электронов, такой процесс имеет место быть. Кроме того, очень жесткое рентгеновское излучение с энергией кванта более 1 МэВ, способно вызвать Ядерный фотоэффект.

[править]

2. Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

[править]

3. Регистрация

Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.

Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30-100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.

В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.

Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.



Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20-60 кв и кожно-фокусном расстоянии 3-7 см (короткодистанционная рентгенотерапия) или при напряжении 180-400 кв и кожно-фокусном расстоянии 30-150 см (дистанционная рентгенотерапия).

Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

[править]

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

Хотя ученые открыли эффект рентгена только начиная с 1890-х, применение рентгеновского излучения в медицине для этой природной силы прошло быстро. Сегодня на благо человечества рентгеновское электромагнитное излучение используется в медицине, научных кругах и промышленности, а также для генерации электроэнергии.

Кроме того излучение имеет полезные приложения в таких областях, как сельское хозяйство, археология, космос, работа на правоохранительные органы, геология (включая горнодобывающую промышленность) и многие другие виды деятельности, даже разрабатываются автомобили с применением явления ядерного деления.

Медицинское использование рентгеновского излучения

В медицинских учреждениях врачи и стоматологи используют различные ядерные материалы и процедуры для диагностики, мониторинга и лечения широкого ассортимента метаболических процессов и заболеваний в организме человека. В результате медицинские процедуры с использованием лучей спасли тысячи жизней путем выявления и лечения заболеваний, начиная от гиперфункции щитовидной железы до рака кости.

Наиболее распространенные из этих медицинских процедур включают использование лучей, которые могут пройти через нашу кожу. Когда выполняется снимок, наши кости и другие структуры как бы отбрасывают тени, потому что они плотнее, чем наша кожа, и эти тени могут быть обнаружены на пленке или экране монитора. Эффект похож на размещение карандаша между листом бумаги и светом. Тень от карандаша будет видна на листе бумаги. Разница заключается в том, что лучи невидимы, так что необходим регистрирующий элемент, что-то типа фотоплёнки. Это позволяет врачам и стоматологам оценить применение рентгеновского излучения увидев сломанные кости или проблемы с зубами.

Применение рентгеновского излучения в лечебных целях

Применение рентгеновского излучения целевым образом в лечебных целях не только для обнаружения повреждений. При специализированном использовании, оно предназначено, чтобы убить раковые ткани, уменьшить размер опухоли или уменьшить боль. Например, радиоактивный йод (в частности йод-131) часто используется для лечения рака щитовидной железы, от заболевания от которой страдает много людей.

Аппараты использующие это свойство также подключаются к компьютерам и сканируют, называясь: компьютерная осевая томография или компьютерная томография.

Эти инструменты обеспечивают врачам цветное изображение, которое показывает очертания и детали внутренних органов. Это помогает врачам обнаруживать и идентифицировать опухоли, размер аномалий или другие проблемы физиологических или функциональных органов.
Кроме того больницы и радиологические центры выполняют миллионы процедур ежегодно. В таких процедурах врачи запускают слегка радиоактивные вещества в тело пациентов, чтобы посмотреть некоторые внутренние органы, например, поджелудочную железу, почки, щитовидную железу, печень или головной мозг, для диагностики клинических условий.

В изучении и практическом использовании атомных явлений одну из важнейших ролей играют рентгеновские лучи. Благодаря их исследованию было сделано множество открытий и разработаны методы анализа вещества, применяемые в самых разных областях. Здесь мы рассмотрим один из видов рентгеновских лучей - характеристическое рентгеновское излучение.

Природа и свойства рентгеновских лучей

Рентгеновское излучение - это высокочастотное изменение состояния электромагнитного поля, распространяющееся в пространстве со скоростью около 300 000 км/с, то есть электромагнитные волны. На шкале диапазона электромагнитного излучения рентген располагается в области длин волн от приблизительно 10 -8 до 5∙10 -12 метров, что на несколько порядков короче оптических волн. Это соответствует частотам от 3∙10 16 до 6∙10 19 Гц и энергиям от 10 эВ до 250 кэВ, или 1,6∙10 -18 до 4∙10 -14 Дж. Следует отметить, что границы частотных диапазонов электромагнитного излучения достаточно условны вследствие их перекрытия.

Является взаимодействие ускоренных заряженных частиц (электронов высоких энергий) с электрическими и магнитными полями и с атомами вещества.

Фотонам рентгеновских лучей свойственны высокие энергии и большая проникающая и ионизирующая способность, особенно для жесткого рентгена с длинами волн менее 1 нанометра (10 -9 м).

Рентгеновские лучи взаимодействуют с веществом, ионизируя его атомы, в процессах фотоэффекта (фотопоглощения) и некогерентного (комптоновского) рассеяния. При фотопоглощении рентгеновский фотон, поглощаясь электроном атома, передает ему энергию. Если ее величина превышает энергию связи электрона в атоме, то он покидает атом. Комптоновское рассеяние характерно для более жестких (энергичных) рентгеновских фотонов. Часть энергии поглощаемого фотона затрачивается на ионизацию; при этом под некоторым углом к направлению первичного фотона излучается вторичный, с меньшей частотой.

Виды рентгеновского излучения. Тормозное излучение

Для получения лучей используют представляющие собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая - до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь разностью потенциалов, бомбардируют анод. В результате их взаимодействия с атомами анода (иногда его именуют антикатодом) рождаются фотоны рентгеновского диапазона.

В зависимости от того, какой процесс приводит к рождению фотона, различают такие виды рентгеновского излучения, как тормозное и характеристическое.

Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в форме рентгеновских фотонов. Такое излучение называется тормозным.

Понятно, что условия торможения будут различаться для отдельных электронов. Это значит, что в рентгеновское излучение преобразуются разные количества их кинетической энергии. В результате тормозное излучение включает фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Иногда по этой причине его еще называют «белым» рентгеновским излучением.

Энергия тормозного фотона не может превышать кинетическую энергию порождающего его электрона, так что максимальная частота (и наименьшая длина волны) тормозного излучения соответствует наибольшему значению кинетической энергии налетающих на анод электронов. Последняя же зависит от приложенной к электродам разности потенциалов.

Существует еще один тип рентгеновского излучения, источником которого является иной процесс. Это излучение именуют характеристическим, и мы остановимся на нем подробнее.

Как возникает характеристическое рентгеновское излучение

Достигнув антикатода, быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Однако при наличии в атоме более высоких энергетических уровней, занятых электронами, освободившееся место пустым не останется.

Необходимо помнить, что электронная структура атома, как и всякая энергетическая система, стремится минимизировать энергию. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Его энергия выше, и, занимая более низкий уровень, он излучает излишек в форме кванта характеристического рентгеновского излучения.

Электронная структура атома - это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определенные значения энергии, отражающие разность уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода - отсюда и название этих лучей. Именно благодаря спектральным различиям ясно, что понимают под тормозным и характеристическим рентгеновским излучением.

Иногда излишек энергии не излучается атомом, а затрачивается на выбивание третьего электрона. Этот процесс - так называемый эффект Оже - с большей вероятностью происходит, когда энергия связи электрона не превышает 1 кэВ. Энергия освобождающегося оже-электрона зависит от структуры энергетических уровней атома, поэтому спектры таких электронов также носят дискретный характер.

Общий вид характеристического спектра

Узкие характеристические линии присутствуют в рентгеновской спектральной картине вместе со сплошным тормозным спектром. Если представить спектр в виде графика зависимости интенсивности от длины волны (частоты), в местах расположения линий мы увидим резкие пики. Их позиция зависит от материала анода. Эти максимумы присутствуют при любой разности потенциалов - если есть рентгеновские лучи, пики тоже всегда есть. При повышении напряжения на электродах трубки интенсивность и сплошного, и характеристического рентгеновского излучения нарастает, но расположение пиков и соотношение их интенсивностей не меняется.

Пики в рентгеновских спектрах имеют одинаковый вид независимо от материала облучаемого электронами антикатода, но у различных материалов располагаются на разных частотах, объединяясь в серии по близости значений частоты. Между самими сериями различие по частотам намного значительнее. Вид максимумов никак не зависит от того, представляет ли материал анода чистый химический элемент или же это сложное вещество. В последнем случае характеристические спектры рентгеновского излучения составляющих его элементов просто накладываются друг на друга.

С повышением порядкового номера химического элемента все линии его рентгеновского спектра смещаются в сторону повышения частоты. Спектр при этом сохраняет свой вид.

Закон Мозли

Явление спектрального сдвига характеристических линий было экспериментально обнаружено английским физиком Генри Мозли в 1913 году. Это позволило ему связать частоты максимумов спектра с порядковыми номерами химических элементов. Таким образом, и длину волны характеристического рентгеновского излучения, как выяснилось, можно четко соотнести с определенным элементом. В общем виде закон Мозли можно записать следующим образом: √f = (Z - S n)/n√R, где f - частота, Z - порядковый номер элемента, S n - постоянная экранирования, n - главное квантовое число и R - постоянная Ридберга. Эта зависимость имеет линейный характер и на диаграмме Мозли выглядит как ряд прямых линий для каждого значения n.

Значения n соответствуют отдельным сериям пиков характеристического рентгеновского излучения. Закон Мозли позволяет по измеряемым значениям длин волн (они однозначно связаны с частотами) максимумов рентгеновского спектра устанавливать порядковый номер химического элемента, облучаемого жесткими электронами.

Структура электронных оболочек химических элементов идентична. На это указывает монотонность сдвигового изменения характеристического спектра рентгеновского излучения. Частотный сдвиг отражает не структурные, а энергетические различия между электронными оболочками, уникальные для каждого элемента.

Роль закона Мозли в атомной физике

Существуют небольшие отклонения от строгой линейной зависимости, выражаемой законом Мозли. Они связаны, во-первых, с особенностями порядка заполнения электронных оболочек у некоторых элементов, и, во-вторых, с релятивистскими эффектами движения электронов тяжелых атомов. Кроме того, при изменении количества нейтронов в ядре (так называемом изотопическом сдвиге) положение линий может слегка меняться. Этот эффект дал возможность детально изучить атомную структуру.

Значение закона Мозли чрезвычайно велико. Последовательное применение его к элементам периодической системы Менделеева установило закономерность увеличения порядкового номера соответственно каждому небольшому сдвигу характеристических максимумов. Это способствовало прояснению вопроса о физическом смысле порядкового номера элементов. Величина Z - это не просто номер: это положительный электрический заряд ядра, представляющий собой сумму единичных положительных зарядов частиц, входящих в его состав. Правильность размещения элементов в таблице и наличие в ней пустых позиций (тогда они еще существовали) получили мощное подтверждение. Была доказана справедливость периодического закона.

Закон Мозли, помимо этого, стал основой, на которой возникло целое направление экспериментальных исследований - рентгеновская спектрометрия.

Строение электронных оболочек атома

Вкратце вспомним, как устроена электронная Она состоит из оболочек, обозначаемых буквами K, L, M, N, O, P, Q либо цифрами от 1 до 7. Электроны в пределах оболочки характеризуются одинаковым главным квантовым числом n, определяющим возможные значения энергии. Во внешних оболочках энергия электронов выше, а потенциал ионизации для внешних электронов соответственно ниже.

Оболочка включает один или несколько подуровней: s, p, d, f, g, h, i. В каждой оболочке количество подуровней увеличивается на один по сравнению с предыдущей. Количество электронов в каждом подуровне и в каждой оболочке не может превышать определенного значения. Они характеризуются, помимо главного квантового числа, одинаковым значением орбитального определяющего форму электронного облака. Подуровни обозначаются с указанием оболочки, которой они принадлежат, например, 2s, 4d и так далее.

Подуровень содержит которые задаются, кроме главного и орбитального, еще одним квантовым числом - магнитным, определяющим проекцию орбитального момента электрона на направление магнитного поля. Одна орбиталь может иметь не более двух электронов, различающихся значением четвертого квантового числа - спинового.

Рассмотрим подробнее, как возникает характеристическое рентгеновское излучение. Так как происхождение этого типа электромагнитной эмиссии связано с явлениями, происходящими внутри атома, удобнее всего описывать его именно в приближении электронных конфигураций.

Механизм генерации характеристического рентгеновского излучения

Итак, причиной возникновения данного излучения является образование электронных вакансий во внутренних оболочках, обусловленное проникновением высокоэнергичных электронов глубоко внутрь атома. Вероятность того, что жесткий электрон вступит во взаимодействие, возрастает с увеличением плотности электронных облаков. Следовательно, наиболее вероятным будет столкновение в пределах плотно упакованных внутренних оболочек, например, самой нижней К-оболочки. Здесь атом ионизируется, и в оболочке 1s образуется вакансия.

Эта вакансия заполняется электроном из оболочки с большей энергией, избыток которой уносится рентгеновским фотоном. Этот электрон может «упасть» из второй оболочки L, из третьей М и так далее. Так формируется характеристическая серия, в данном примере - К-серия. Указание на то, откуда происходит заполнивший вакансию электрон, дается в виде греческого индекса при обозначении серии. «Альфа» означает, что он происходит из L-оболочки, «бета» - из М-оболочки. В настоящее время существует тенденция к замене греческих буквенных индексов латинскими, принятыми для обозначения оболочек.

Интенсивность альфа-линии в серии всегда наивысшая - это значит, что вероятность заполнения вакансии из соседней оболочки самая высокая.

Теперь мы можем ответить на вопрос, какова максимальная энергия кванта характеристического рентгеновского излучения. Она определяется разностью значений энергии уровней, между которыми совершается переход электрона, по формуле E = E n 2 - E n 1 , где E n 2 и E n 1 - энергии электронных состояний, между которыми произошел переход. Наивысшее значение этого параметра дают переходы К-серии с максимально высоких уровней атомов тяжелых элементов. Но интенсивность этих линий (высота пиков) самая малая, поскольку они наименее вероятны.

Если из-за недостаточности напряжения на электродах жесткий электрон не может достичь К-уровня, он образует вакансию на L-уровне, и формируется менее энергичная L-серия с большими длинами волн. Аналогичным образом рождаются последующие серии.

Кроме того, при заполнении вакансии в результате электронного перехода возникает новая вакансия в вышележащей оболочке. Это создает условия для генерирования следующей серии. Электронные вакансии перемещаются выше с уровня на уровень, и атом испускает каскад характеристических спектральных серий, оставаясь при этом ионизированным.

Тонкая структура характеристических спектров

Атомным рентген-спектрам характеристического рентгеновского излучения свойственна тонкая структура, выражающаяся, как и в оптических спектрах, в расщеплении линий.

Тонкая структура связана с тем, что энергетический уровень - электронная оболочка - представляет собой набор тесно расположенных компонентов - подоболочек. Для характеристики подоболочек введено еще одно, внутреннее квантовое число j, отражающее взаимодействие собственного и орбитального магнитных моментов электрона.

В связи с влиянием спин-орбитального взаимодействия энергетическая структура атома усложняется, и в результате характеристическое рентгеновское излучение имеет спектр, которому свойственны расщепленные линии с очень близко расположенными элементами.

Элементы тонкой структуры принято обозначать дополнительными цифровыми индексами.

Характеристическое рентгеновское излучение обладает особенностью, отраженной только в тонкой структуре спектра. Переход электрона на низший энергетический уровень не происходит с нижней подоболочки вышележащего уровня. Такое событие имеет пренебрежимо малую вероятность.

Использование рентгена в спектрометрии

Это излучение благодаря своим особенностям, описанным законом Мозли, лежит в основе различных рентгеноспектральных методов анализа веществ. При анализе рентгеновского спектра применяют либо дифракцию излучения на кристаллах (волнодисперсионный метод), либо чувствительные к энергии поглощенных рентгеновских фотонов детекторы (энергодисперсионный метод). Большинство электронных микроскопов оснащены теми или иными рентгеноспектрометрическими приставками.

Особенно высокой точностью отличается волнодисперсионная спектрометрия. При помощи особых фильтров выделяются наиболее интенсивные пики в спектре, благодаря чему можно получить практически монохроматическое излучение с точно известной частотой. Материал анода выбирается очень тщательно, чтобы обеспечить получение монохроматического пучка нужной частоты. Его дифракция на кристаллической решетке изучаемого вещества позволяет исследовать структуру решетки с большой точностью. Этот метод применяется также в изучении ДНК и других сложных молекул.

Одна из особенностей характеристического рентгеновского излучения учитывается и в гамма-спектрометрии. Это высокая интенсивность характеристических пиков. В гамма-спектрометрах применяется свинцовая защита от внешних фоновых излучений, вносящих помехи в измерения. Но свинец, поглощая гамма-кванты, испытывает внутреннюю ионизацию, в результате чего активно излучает в рентгеновском диапазоне. Для поглощения интенсивных максимумов характеристического рентгеновского излучения свинца используется дополнительная кадмиевая экранировка. Она, в свою очередь, ионизируется и также излучает в рентгене. Для нейтрализации характеристических пиков кадмия применяют третий экранирующий слой - медный, рентгеновские максимумы которого лежат вне рабочего диапазона частот гамма-спектрометра.

Спектрометрия использует и тормозное, и характеристическое рентгеновское излучение. Так, при анализе веществ исследуются спектры поглощения сплошного рентгена различными веществами.