Несмотря на развитие энергосберегающей техники, лампы накаливания до сих пор держат лидерство на рынке осветительных приборов.

Как выглядит лампа накаливания

Принцип действия

Действие лампы заключается в существенном нагревании электрическим током нити накала. Чтобы твердое тело начало светиться красным излучением, его температуру надо увеличить до 570 0 С. Оно становится комфортным для глаз при 4-5 кратном увеличении температуры.

Из всех металлов самым тугоплавким является вольфрам (3400 0 С), поэтому в качестве нити накала применяют проволоку из него. Для увеличения площади излучения ее свертывают в спираль, которая в лампе накаливания нагревается до 2000-2800 0 С. При этом цветовая температура составляет 2000-3000К, создавая желтоватый спектр. Он более энергозатратный и тусклый, чем дневной, но комфортный для глаз.

Еще в школьном учебнике приводится эксперимент с увеличением свечения лампы в зависимости от силы электрического тока. По мере его роста происходит выброс излучения и тепла.

В воздушной среде вольфрамовая нить быстро окисляется и разрушается под действием высокой температуры. Раньше в стеклянной колбе создавали вакуум, а сейчас чаще всего применяют инертный газ: азот, аргон, криптон. При этом сила свечения увеличивается. Кроме того, давление газа препятствует испарению вольфрама от температуры свечения.

Строение

Несмотря на видимую простоту изготовления, лампа состоит из 11 элементов. При этом в конструкции применяются 7 различных металлов. Важнейшим элементом является нить накала. Она может быть разных видов: круглой, иметь форму одной или нескольких лент. В связи с разнообразием элементов, где световая энергия получается из электрической, их принято называть телами накала. Колбы в большинстве случаев бывают круглыми или грушевидными, но могут быть других форм.

Виды ламп накаливания

На рисунке ниже изображена конструкция лампы. Внутри располагаются электроды (6), спираль (2) (вольфрам) и крючки (3) (молибден). Цоколи (9) из оцинкованной стали изготавливают в основном резьбовыми еще со времен Эдисона. Диаметры их могут различаться: Е 14 , Е 27 , Е 40 – по величине наружного диаметра. Цоколь также соединяют с патроном посредством штырьков или штифтов. Его тип определяется по маркировке, выбитой на наружной поверхности.

Устройство лампы накаливания

Параметры

  • электрические;
  • технические (интенсивность и спектральный состав светового потока);
  • эксплуатационные (условия применения, размеры, отдача света, срок эксплуатации).

Мощность

Основные характеристики наносятся в виде маркировки. В их число входит мощность, по которой выбирают лампу (60 Вт – наиболее востребованы). Здесь более важна световая характеристика. В таблице приведены характеристики бытовых ламп, из которых следует, что световая энергия от одной лампы интенсивней, чем от нескольких, с той же суммарной мощностью. При этом она обходится дешевле.

Характеристики ламп

Мощность, Вт 5 15 25 40 60 75 100
Отдача света, Лм/Вт 4 8 8.8 10.4 11.8 12.5 13.8

Световая энергия расходуется больше на лампах меньшей мощности. Поэтому сэкономить электроэнергию таким образом не получится.

Технические характеристики

Световая энергия от мощности лампы накаливания зависит нелинейно. Отдача света растет с ее повышением, а после 75 Вт начинает снижаться.

Преимуществом ламп накаливания является равномерность освещения. Сила света у них практически одна и та же во все стороны.

Пульсирование света негативно сказывается на утомляемости глаз. Нормальным считается коэффициент пульсации не более 10 % во время занятий мелкой работой. У ламп накаливания он не превышает 4 %, и худший показатель наблюдается у лампы на 40 Вт.

Лампы накаливания нагреваются больше всех остальных. По расходу мощности она больше является обогревателем помещения, а не прибором освещения. Отдача света происходит всего на 5-15 %. С целью экономии электроэнергии использование ламп накаливания на 100 Вт и более запрещено. Лампа на 60 Вт греется не очень сильно, а освещения бывает достаточно на одну комнату.

Если оценивать спектр излучения, то по сравнению с дневным светом в лампах накаливания недостаточно синего света и избыток красного. Но он считается приемлемым, поскольку меньше утомляет глаза по сравнению с лампами дневного света.

Эксплуатационные параметры

Для ламп важны условия, где они применяются. Их можно эксплуатировать в температурном интервале от -60 0 С до +50 0 С, влажности не более 98 % при 20 0 С и давлении не менее 0,75∙10 5 Па. Для них не нужны дополнительные устройства за исключением , которым плавно регулируется отдача света. Лампы дешевы и не требуют никакой квалификации при замене.

К недостаткам относятся: самая низкая надежность, сильный нагрев и низкий КПД.

Виды ламп накаливания

Хотя энергосберегающие источники света обладают лучшими показателями, лампы накаливания остаются на первом месте. Особенно это относится к применению в быту.

Лампы общего назначения (ЛОН)

ЛОН широко применяются, несмотря на то, что только 5 % энергии остается на освещение, а остальная – выделяется в виде тепла. ЛОН предназначены для бытовых нужд, предприятий, административных зданий и внешних светильников. Они подразделяются на стабильное напряжение 220 В и повышенное – до 250 В. Продолжительность горения у ламп небольшая и составляет около 1000 часов.

Первой буквой маркировки обозначается основная особенность, например, В – вакуумная, Б – биспиральная, Г – моноспиральная.

  • Г 235-245-60-П (моноспиральная, диапазон напряжения 235-245 В, мощность 60 Вт, для подсобных помещений);
  • В 230-240-60 (вакуумная, на 230-240 В, 60 Вт).

Лампы имеют значительную мощность. Ограничение по верхнему пределу 100 Вт к ним не относится. Лампы служат для направленного освещения на дальние расстояния: для прожекторов общего назначения, кинопроекционные и маячные. Тело накала у них имеет компактное расположение, чтобы улучшить фокусировку. Она обеспечивается также специальной конструкцией цоколей или за счет наличия дополнительных линз.

Как выглядят прожекторные лампы

Зеркальные лампы

Особенностью является специальная конструкция колбы и наличие светоотражающего экрана из алюминия. Чтобы придать свету мягкость и уменьшить контрастность, светопроводящий участок сделан матовым. Светораспределение бывает концентрированным (ЗК), средним (ЗС) и широким (ЗШ). Состав стекла некоторых зеркальных ламп меняют, добавляя в него окись неодима. Это делает их ярче и сдвигает цветовую температуру в сторону белого света.

Как выглядит зеркальная лампа

Лампы применяются для освещения сцен, витрин, промышленных комплексов, медицинских кабинетов и многого другого.

Галогенные лампы

Особенностью лампы является наличие в колбе галогенных соединений. При взаимодействии с ними испарившиеся молекулы вольфрама осаждаются обратно на спираль, что позволяет создавать повышенную температуру ее нагрева и в 2 раза увеличивать срок службы ламп.

Галогенная лампа со штырьковым цоколем

Выбирая лампу, нужно знать ее особенности, обычно указанные на маркировке, а также цель применения.

Как включать лампы накаливания

Несмотря на то, что для ламп накаливания не требуются никакие пусковые устройства, есть правила их подключения, которые следует выполнять. Прежде всего, к цоколю подключается нулевой провод, а через выключатель проходит фазный. При выполнении этих правил случайное прикосновение к цоколю не вызовет удара током.

Чтобы подать напряжение на все лампы с помощью одного выключателя, их следует подключить параллельно.

Схемы подключения ламп

В схемах подключение светильников производится параллельно. Обычно в помещение делается общий с розетками ввод, но выключатель связан только с лампами. Источники могут переключаться одновременно (рис. в) или раздельно (рис. б). В люстрах лампы могут объединяться в группы от одного переключателя. На рис. г показана схема ее работы, где 3 положения переключателя обеспечивают все схемы возможных состояний двух ламп.

Для длинных коридоров применяют 2 проходных выключателя, через которые можно независимо работать с лампой из разных мест (рис. д). Особенно это удобно для переключений наружных светильников из дома. При нажатии на один из них одна или несколько ламп загораются или гаснут. Для такой схемы требуется большее количество проводов.

Способы совершенствования ламп

Лампы накаливания развиваются в тех же направлениях, что и остальные источники света: повышение КПД, снижение энергозатрат и безопасное применение. Для этого подбирается определенная газовая среда, применяются галогенные и квацево-галогенные лампы, улучшаются технические характеристики. Многих вполне устраивает мягкий и теплый свет лампы накаливания.

Применение углеродных нанотрубок в качестве тела накаливания позволило в 2 раза увеличить светоотдачу по сравнению с вольфрамом. Стабильные параметры ламп сохраняются в течение 3000 часов. Пониженное напряжение питания делает ее более безопасной.

Как увеличить срок службы

Причины быстрого перегорания ламп следующие:

  • нестабильность источника питания;
  • механические сотрясения;
  • температура воздуха;
  • нарушение соединений в проводке.

С течением времени нить накала испаряется, сопротивление лампы увеличивается, и она перегорает. Кроме того, сопротивление обычной холодной и горячей лампы на 60-100 Вт меняется в 10 раз. Сопротивление холодной спирали в лампе на 60 Вт составляет 61,5 Ом, а горячей – 815 Ом. Чем ярче свет и чаще включение, тем процесс происходит интенсивней. При этом опасность выхода из строя возрастает к концу периода службы. В связи с этим требуется подобрать подходящее напряжение для нормальной светоотдачи и достаточного срока эксплуатации.

Способы обеспечения долговечности ламп накаливания:

  1. При покупке выбрать подходящий диапазон напряжений.
  2. Переноски перемещаются в выключенном состоянии, поскольку малейшее сотрясение приводит к перегоранию работающей лампы.
  3. Если лампочка быстро выходит из строя в одном и том же патроне, его следует отремонтировать или заменить.
  4. Оцените статью:

Сегодня сложно представить жизнь людей без электрической лампы. Этот довольно простой прибор используется для освещения различных помещений и улиц. Существует большое количество видов лампочек, отличающихся мощностью свечения и принципом работы. В последнее время все чаще пользователи обращают внимание на энергосберегающие устройства, но и обычная лампа накаливания не спешит сдавать позиции.

Принцип действия

Принцип работы лампы накаливания довольно прост , как и конструкция этого устройства. Электроток проходит через тугоплавкий проводник и разогревает его до высокой температуры. Следует заметить, что температура нагрева зависит от подведенного к устройству напряжения. В соответствии с законом Планка, разогретый проводник способен генерировать электромагнитные волны.

Чем выше температура, тем короче длина волны испускаемого излучения. Волны видимого спектра появляются при нагреве проводника до нескольких тысяч градусов по шкале Кельвина. Если спираль электрической лампочки нагреть до 5000 К, то она будет светиться нейтральным светом (аналогично тому, что излучает Солнце). По мере снижения температуры цвет свечения начнет меняться сначала на желтый, а затем на красный.

В лампах преобладающая часть энергии трансформируется в тепловую и лишь незначительное ее количество преобразуется в световой поток. Также следует помнить, что органы зрения человека способны воспринимать только определенный диапазон световых волн. Чтобы увеличить освещенность помещения, приходится повышать температуру спирали. Однако это возможно лишь до определенного показателя, который ограничен свойствами материала проводника.

Таким образом, максимальная температура лампочки составляет 3410 градусов по шкале Цельсия. Дальнейший нагрев вольфрама приведет к деформации и расплавлению материала. Однако даже такая температура может быть достигнута только при определенных условиях окружающей среды. Если вольфрам контактирует с кислородом, то он превращается в оксид. Когда из колбы выкачивается воздух, появится возможность создать лампу мощностью максимум в 25 Вт. Более мощные устройства содержат в колбе инертные газы.

Особенности конструкции

Хотя лампы и отличаются конструкцией, они имеют три общих элемента - выводы, проводник и стеклянную колбу. У некоторых устройств специального назначения может отсутствовать цоколь, так как используются держатели другого типа. Также иногда в лампочки встраивается ферроникелевый предохранитель. Чаще всего он монтируется в ножке, поэтому после выхода из строя проводника колба не разрушается.

Когда нить накала обрывается, появляется электродуга, которая расплавляет остатки материала. Вещество в расплавленном состоянии падает на стеклянную емкость и может нарушить ее целостность. Предохранитель способен предотвратить процесс плавления спирали. Однако такая технология не получила широкого распространения по причине малой эффективности.

Если говорить о том, из чего состоит лампочка, то необходимо отметить основные элементы конструкции. К ним относятся:

  • колба, изготовленная из стекла;
  • излучающий проводник;
  • электроды;
  • цоколь;
  • газовая среда;
  • держатели излучающего проводника.

Колба и газовая среда

Благодаря стеклянной емкости нить накаливания защищена от процесса окисления, возникающего при взаимодействии материала излучающего проводника с кислородом. Первые электрические лампы накаливания производились с вакуумной колбой. Сейчас по такой технологии выпускаются только устройства малой мощности. Для производства более мощных устройств чаще всего используется азотно-аргонная смесь или один аргон. Также в колбах некоторых ламп может содержаться ксенон либо криптон. Показатель теплового излучения материала нити накаливания зависит от молярной массы газа.

Отдельной группой являются галогенные лампочки, в стеклянную емкость которых закачан газ группы галогенов. При нагреве материал излучающего проводника испаряется и вступает в реакцию с этими газами. Получившееся во время химического процесса вещество быстро расщепляется под воздействием высокой температуры и возвращается на нить накала. В результате не только повышается КПД устройства, но и увеличивается срок его эксплуатации.

Излучающий проводник

Форма нити накала может быть любой и зависит от специфики устройства. Чаще всего в обычной лампочке проводник имеет круглое сечение, но можно встретить и ленточное. Следует заметить, что в первых лампах использовался даже уголь , способный нагреться до температуры 3559 градусов по шкале Цельсия. Однако в современных приборах основным материалом нити накаливания является вольфрам.

Также этот элемент может быть изготовлен из сплава осмия с вольфрамом. Выбор вида спирали не является случайным, так как от этого зависят ее габариты. В современных лампах могут использоваться биспирали и даже триспирали. Они получаются благодаря повторному закручиванию. Это позволяет увеличить КПД устройства благодаря снижению показателя тепловыделения.

Цоколь лампы

Этот элемент стандартизован и имеет определенную форму и габариты. В результате можно легко заменить лампочку после ее выхода из строя. Сегодня чаще всего используются устройства с цоколем Е14 , Е27, а также Е40. Расшифровка этой маркировки крайне проста - цифры после литеры Е указывают на наружный диаметр элемента.

Так как сейчас существует большое количество видов ламп, то некоторые из них отличаются конструкцией цоколя. Например, есть приборы, которые удерживаются в патроне благодаря силе трения. Также следует заметить, что цоколь в устройстве лампы накаливания выполняет следующие функции:

  • соединяет несколько элементов;
  • представляет собой один из контактов;
  • позволяет надежно крепить прибор в патроне.

Преимущества и недостатки

Все технические устройства имеют не только преимущества, но и недостатки. Лампочки накаливания не стали исключением.

Положительные качества

Одним из главных плюсов этих устройств является простота конструкции, что делает стоимость изделия невысокой. Сейчас без труда можно приобрести прибор желаемой мощности и габаритов. Не менее важным преимуществом классических электролампочек является спектр свечения их излучающего элемента. Так как он максимально близок к солнечному свету, то не может негативно влиять на органы зрения.

Разогретая нить накала обладает тепловой инерцией, поэтому испускаемый ею свет практически лишен пульсации. Это выгодно отличает обычные лампочки накаливания от изделий другого типа (например, люминесцентных ламп). При производстве этих устройств не используются вредные вещества, благодаря чему для их утилизации не требуются специальные технологии.

Негативные свойства

Одним из основных недостатков устройств можно считать зависимость от показателя питающего напряжения. Если он увеличивается и превышает допустимые пределы, то спираль быстро изнашивается. Когда напряжение падает, то уменьшается и световой поток, излучаемый устройством.

Кроме этого, следует помнить, что излучающий элемент предназначен для работы на протяжении продолжительного временного отрезка. Показатель сопротивления холодной спирали значительно ниже в сравнении с рабочим режимом.

Из-за этого в момент включения возникает сильный скачок силы тока, что приводит к испарению материала нити накала. Таким образом, срок службы устройства зависит от количества включений.

Однако с этим недостатком можно бороться, используя специальные устройства плавного пуска - диммеры. Также с их помощью можно регулировать и показатель светового потока в довольно широком диапазоне.

Наиболее серьезным недостатком ламп накаливания является низкий КПД. Основная часть электроэнергии преобразуется в тепло, которое рассеивается в окружающей среде. Сейчас все чаще используются светодиодные лампы, позволяющие экономить на электричестве.

В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока ). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка . Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 . Однако не известны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000-2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Чем меньше температура тела накаливания, тем меньшая доля энергии , подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение , и тем более «красным» кажется излучение.

Для оценки физиологического качества светильников используется понятие цветовой температуры . При типичных для ламп накаливания температурах 2200-2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма (нарушение его синтеза негативно сказывается на здоровье).

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом - обычно аргоном . На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурный коэффициент сопротивления , что означает увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников , что экономически выгодно отличает их от газоразрядных люминесцентных ламп . Для нити накаливания осветительной лампы типично сопротивление в холодном состоянии в 10 раз меньше, чем в нагретом до рабочих температур.

Для изготовления обычной лампочки требуется как минимум 7 металлов .

Конструкция

Конструкции ламп весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы, могут применяться держатели тела накала различной конструкции. Крючки-держатели тела накала ламп накаливания (в том числе ламп накаливания общего назначения) изготовляются из молибдена . Лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. В настоящее время отказываются от применения предохранителей из-за их малой эффективности.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении через тело накала протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растёт) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Разновидности

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые
  • Ксенон-галогенные с отражателем ИК-излучения (так как большая часть излучения лампы приходится на ИК-диапазон, то отражение ИК-излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения , их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром около 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счёт особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы - разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первое число означает рабочее напряжение в вольтах, второе - силу тока в миллиамперах;
  • Фотолампа , перекальная лампа - разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400 К, по сравнению с 2700 К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
  • Проекционные лампы - для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы . В автомобиле - может быть у лампы переднего света одна нить для дальнего света, другая для ближнего, или, к примеру, одна нить для габаритного огня, другая для стоп-сигнала. Кроме того, такие лампы могут содержать экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей. В самолёте посадочно-рулёжная фара имеет основную нить, на которой лампа работает без внешнего охлаждения и дополнительную, включаемую вместе с основной, позволяя получить более мощный свет, но только при внешнем охлаждении - обдуве набегающим потоком воздуха. В звёздах Московского Кремля используются специально сконструированные двухнитевые лампы, обе нити включены параллельно.
  • Лампа-фара . Лампа сложной специальной конструкции, применяемая на подвижных объектах, фигурная колба которой выполнена в виде части корпуса фары с отражателем. Конструктивно содержит в себе нить(и) накала, отражатель, рассеиватель, элементы крепления, клеммы и т. д. Лампы-фары широко применяются в современной автомобильной технике и уже достаточно давно в авиации.
  • Малоинерционная лампа накаливания , лампа накаливания с тонкой нитью - использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа . Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала . С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы - основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов . Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесённым тонером . За счёт тепла, передающегося от вала, тонер расплавляется и впрессовывается в структуру бумаги.
  • Лампы специального спектра излучения . Применяются в разнообразной технике.

История изобретения

Перегоревшую лампу, колба которой сохранила целостность, а нить разрушилась лишь в одном месте, можно починить путём встряхиваний и поворотов, таких, чтобы концы нити вновь соединились. При прохождении тока концы нити могут сплавиться и лампа продолжит работу. При этом однако может выйти из строя (расплавиться/обломиться) предохранитель, входящий в состав лампы.

Последовательное подключение

При последовательном подключении ламп накаливания сильно снижается их световая эффективность и меняется цветовая температура. Данный способ используется с целью продлить срок службы ламп или получить освещение более низким накалом (например, при создании интерьера под старину). Для освещения хорошо использовать подключение по две лампы последовательно, но и три лампы могут дать достаточный свет. Данные виды освещения крайне неэффективны и скорее могут найти применение в качестве источников тепла, когда свет от ламп нежелателен (например, при обогреве лампами картофеля в погребе). Ниже приводятся параметры ламп накаливания при последовательном подключении.

Данные приводятся относительно стандартных ламп 95Вт со светоотдачей 13,8лм/Вт (1311лм) и температурой тела накала 2700°C (на практике может быть ниже) при которой пик излучения приходится на длину волны 975нм.

Две лампы 1870°C (жёлтый свет), 2,75лм/Вт, одна лампа 33,25Вт 91,4лм, две 66,5Вт 183лм. Пик излучения 1352нм. Срок службы 35-45 тыс. часов.

Три лампы 1480°C (жёлто-оранжевый свет), 0,845лм/Вт, одна лампа 18,07Вт 15,27лм, три 54,2Вт 45,8лм. Пик излучения 1653нм. Срок службы 250-350 тыс. часов (практически не ограничен).

Четыре лампы 1250°C (оранжевый свет), 0,195лм/Вт, одна лампа 11,74Вт 2,29лм, четыре 46,94Вт 9,15лм. Пик излучения 1903нм. Срок службы не ограничен.

Пять ламп 1090°C (красновато-оранжевый свет), ≈0,044лм/Вт, одна лампа 8,5Вт ≈0,374лм, пять 42,49Вт ≈1,87лм. Пик излучения 2126нм. Срок службы не ограничен.

Шесть ламп 960°C (красно-оранжевый свет), светоотдача в пределах ≈0,0075-0,011лм/Вт, одна лампа 6,52Вт, шесть 39,12Вт. Пик излучения 2350нм. Срок службы не ограничен.

Как видно из параметров, освещение возможно двумя или тремя лампами последовательно, если использовать подключение по четыре лампы, то для получения приемлемого света нужно использовать мощные промышленные лампы накаливания. Подключения по четыре, пять и шесть ламп последовательно удобны, когда лампы используются как обогреватели воздуха. Если лампы используются как замена свечного освещения, то подключение по две последовательно по цвету примерно соответствует пламени парафиновой свечи, а подключение по три близко по цвету к пламени масляной лампы (в сочетании с низким световым потоком данное подключение очень хорошо имитирует огонь). Четыре лампы последовательно удобны для создания света углей в камине, так как дают очень похожий свет. Следует заметить, что при слабом накале и малой мощности ламп они нагреваются достаточно сильно, так как из-за снижения температуры тела накала излучаемое инфракрасное излучение смещается в длинноволновую область и значительный его процент задерживается стеклом колбы, которое становится непрозрачным после 2700нм.

Также выпускаются лампы, специально предназначенные для включения последовательно. Например, на старых вагонах метро для освещения салона последовательно включалось по 15 ламп на напряжение 50 В (что в сумме даёт 750 В - напряжение на контактном рельсе); конструкция таких ламп включает специальное самозакорачивающее устройство, благодаря которому при перегорании одной лампы остальные продолжают гореть.

Преимущества и недостатки ламп накаливания

Преимущества

  • низкая цена
  • небольшие размеры
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • мгновенное зажигание и перезажигание
  • незаметность мерцания при работе на переменном токе (важно на предприятиях)
  • возможность использования регуляторов яркости
  • приятный и привычный в быту спектр; спектр излучения лампы накаливания определяется исключительно температурой рабочего тела и не зависит ни от каких иных условий, что следует из принципа её работы. Он не зависит от применяемых материалов и их чистоты, стабилен во времени и имеет стопроцентную предсказуемость и повторяемость. Это важно в том числе при больших инсталляциях и в светильниках из сотен ламп: нередко можно увидеть, когда при применении современных люминофорных или светодиодных ламп они имеют разный цветовой оттенок в пределах группы. Это уменьшает эстетическое совершенство инсталляций. При неисправности одной лампы часто приходится заменять всю группу целиком, но даже при установке ламп из одной партии встречается девиация спектра
  • высокий индекс цветопередачи , Ra 100
  • непрерывный спектр излучения
  • резкие тени (как при солнечном освещении) благодаря малому размеру излучающего тела
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
  • налаженность в массовом производстве
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • отсутствие пускорегулирующей аппаратуры
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • отсутствие гудения при работе на переменном токе (ввиду отсутствия электронного балласта, драйвера или преобразователя)
  • при работе не создаёт радиопомехи
  • устойчивость к электромагнитному импульсу
  • нечувствительность к ионизирующей радиации

Недостатки

Производство

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания .

23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» . Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года - мощностью 25 Вт и более.

Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против - соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона, и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб, а в случае вандализма (повреждение люминесцентной лампы из хулиганских побуждений) - возникает опасность загрязнения помещения парами ртути.

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство лампы накаливания. Но для начала хотелось бы сказать пару слов об истории этой лампы.

Самую первую лампочку накаливания придумал английский учёный Деларю ещё в 1840 году. Она была с платиновой спиралью. Немного позже, в 1854 году, немецкий учёный Генрих Гёбель представил лампу с бамбуковой нитью, которая находилась в вакуумной колбе. В то время ещё очень много было представленных различных ламп, различными учёными. Но все они имели очень короткий срок службы, и были не эффективными.

В 1890 году учёный Лодыгин А. Н. впервые представил лампу, у которой нить накаливания была из вольфрама, и имела вид спирали. Так же этот учёный делал попытки откачивания из колбы воздуха, и заполнение её газами. Что значительно увеличивало срок службы ламп.

А вот серийное производство ламп накаливания началось уже в 20 веке. Тогда это был реальный прорыв в технологии. Сейчас же, в наше время, многие предприятия, и просто обычные люди отказываются от этих ламп из-за того, что они много потребляют электроэнергии. А в некоторых странах даже запретили выпускать лампы накаливания, мощностью которых более 60 Ватт.

Устройство лампы накаливания.

Такая лампа состоит из следующих деталей: цоколь, колба, электроды, крючки для держания нити накаливания, нить накаливания, штенгель, изолирующий материал, контактная поверхность.

Для того, чтобы вам было более понятно, я сейчас напишу про каждую деталь отдельно. Так же смотрите рисунок и видео.

Колба – изготавливается из обычного стекла и нужна для защиты нити накаливания от внешней среды. В неё вставляется штенгель с электродами и крючками, которые держат саму нить. В колбе специально создаётся вакуум, или она заполняется специальным газом. Обычно это аргон, так как он не поддается нагреванию.

С той стороны, где находятся вывода электродов, колба заплавляется стеклом и приклеивается к цоколю.

Цоколь нужен для того, чтобы лампочку можно было вкрутить в патрон. Обычно он изготовляется из алюминия.

Нить накаливания – деталь, которая излучает свет. Изготавливается в основном из вольфрама.

А теперь для закрепления своих знаний, предлагаю вам посмотреть очень интересное видео, в котором рассказывается, и показывается, как делаются лампы накаливания.

Принцип действия.

Принцип действия лампы накаливание основывается на нагревании материала. Ведь не зря нить накаливания имеет такое название. Если пропустить через лампочку электрический ток, то вольфрамовая нить накаляется до очень высокой температуры и начинает излучать световой поток.

Не расплавляется нить, потому что вольфрам имеет очень высокую температуру плавления, где-то 3200—3400 градусов Цельсия. А при работе лампы нить накаляется где-то до 2600—3000 градусов Цельсия.

Преимущества и недостатки ламп накаливания.

Основные преимущества:

Не высокая цена.

Небольшие габариты.

Легко переносят перепады напряжения в сети.

При включении мгновенно зажигается.

Для человеческого глаза практически незаметно мерцание при работе от источника переменного тока.

Можно использовать устройство для регулировки яркости.

Можно использовать как при низких, так и при высоких температурах окружающей среды.

Такие лампы можно выпускать практически на любое напряжение.

В своём составе не содержит опасных веществ, и поэтому не нуждается в специальной утилизации.

Для зажигания лампы не нужно никаких устройств запуска.

Может работать на переменном и на постоянном напряжении.

Работает очень тихо и не создаёт радиопомех.

И это далеко не полный список преимуществ.

Недостатки:

Имеет очень маленький срок службы.

Очень маленький КПД. Обычно он не превышает 5 процентов.

Световой поток и срок службы напрямую зависит от напряжения сети.

Корпус лампы при работе очень сильно нагревается. Поэтому такая лампа считается пожароопасной.

При разрыве нити колба может взорваться.

Очень хрупкая, и чувствительная к ударам.

В условиях вибрации очень быстро выходит со строя.

И в заключение статьи хотелось бы написать об одном удивительном факте. В США в одной из пожарных частей города Ливермор, есть лампа мощностью 60 ватт, которая светиться беспрерывно уже более 100 лет. Её зажгли ещё в 1901 году, а в 1972 году её занесли в Книгу рекордов Гинесса.

Секрет её долговечности в том, что она работает в глубоком недокале. Кстати, работу этой лампы беспрерывно фиксирует вебкамера. Так что кому интересно можете поискать прямую трансляцию в интернете.

На этом у меня всё. Если статья была вам полезной, то поделитесь неё со своими друзьями в социальных сетях и подписывайтесь на обновления. Пока.

С уважением Александр!

Среди всех электроустановочных и электромонтажных изделий осветительная аппаратура имеет наиболее богатый ассортимент. Это происходит потому, что элементы освещения несут в себе не только сугубо технические характеристики, но и элементы дизайна. Возможности современных ламп и светильников, их конструкторское разнообразие настолько велики, что немудрено растеряться. Например, существует целый класс светильников, предназначенных исключительно для гипсокартонных потолков.

Многочисленные виды ламп имеют различную природу света и эксплуатируются в неодинаковых условиях. Чтобы разобраться, какого типа лампа должна стоять в том или ином месте и каковы условия ее подключения, необходимо вкратце изучить основные виды осветительной аппаратуры.

У всех ламп есть одна общая часть: цоколь, при помощи которого они соединяются с проводами освещения. Это касается тех ламп, в которых есть цоколь с резьбой для крепления в патроне. Размеры цоколя и патрона имеют строгую классификацию. Необходимо знать, что в бытовых условиях применяют лампы с 3 видами цоколей: маленьким, средним и большим. На техническом языке это означает Е14, Е27 и Е40. Цоколь, или патрон, Е14 часто называют «миньон» (в gер. с фр. - «маленький»).

Самый распространенным размер - Е27. Е40 используют при уличном освещении. Лампы этой маркировки имеют мощность 300, 500 и 1000 Вт. Цифры в названии обозначают диаметр цоколя в миллиметрах. Помимо цоколей, которые вкручиваются в патрон при помощи резьбы, есть и другие виды. Они штырькового типа и называются G-цоколями. Используются в компактных люминесцентных и галогенных лампах для экономии места. При помощи 2 или 4 штырьков лампа крепится в гнезде светильника. Видов G-цоколей много. Основные из них: G5, G9, 2G10, 2G11, G23 и R7s-7. На светильниках и лампах всегда указывается информация о цоколе. При выборе лампы необходимо сравнивать эти данные.

Мощность лампы - одна из важнейших характеристик. На баллоне или цоколе производитель всегда указывает мощность, от которой зависит светимость лампы . Это не уровень света, который она излучает. В лампах различной природы света мощность имеет совершенно несхожее значение.

Например, энергосберегающая лампа при указанной мощности 5 Вт будет светить не хуже лампы накаливания в 60 Вт. То же касается и люминесцентных ламп . Светимость лампы исчисляется в люменах. Как правило, это не указывается, так что при выборе лампы необходимо ориентироваться на советы продавцов.

Светоотдача обозначает, что на 1 Вт мощности лампа дает столько-то люмен света. Очевидно, что энергосберегающая компактная люминесцентная лампа в 4–9 раз экономичнее, нежели накаливания. Можно легко подсчитать, что стандартная лампа в 60 Вт дает примерно 600 лм, тогда как компактная имеет такое же значение при мощности 10–11 Вт. Настолько же она будет экономичнее по энергопотреблению.

Лампы накаливания

(ЛОН) - самый первый источник электрического света, который появился в домашнем обиходе. Она была изобретена еще в середине 19 в., и хотя с того времени претерпела немало реконструкций, сущность осталась без изменений. Любая лампа накаливания состоит из вакуумного стеклянного баллона, цоколя, на котором располагаются контакты и предохранитель, и нити накаливания, излучающей свет.

Спираль накаливания сделана из вольфрамовых сплавов, которые легко выдерживают рабочую температуру горения +3200 °C. Чтобы нить мгновенно не перегорела, в современных лампах накачивают в баллон какой-нибудь инертный газ, например аргон.

Принцип работы лампы очень прост. При пропускании тока через проводник малого сечения и низкой проводимости часть энергии уходит на разогрев спирали-проводника, отчего тот начинает светиться в видимом свете. Несмотря на столь простое устройство, видов ЛОН существует огромное множество. Они различаются по форме и размерам.

Декоративные лампы (свечи): баллон имеет вытянутую форму, стилизованную под обычную свечу. Как правило, используются в небольших светильниках и бра.

Окрашенные лампы : стекла баллонов имеют различный цвет с декоративными целями.

Зеркальными лампами называют лампы, часть стеклянного баллона которых покрыта отражающим составом для направления света компактным пучком. Такие лампы чаще всего используют в потолочных светильниках, чтобы направлять свет вниз, не освещая потолка.

Лампы местного освещения работают под напряжением 12, 24 и 36 В. Они потребляют немного энергии, но и освещение соответствующее. Применяются в ручных фонарях, аварийном освещении и т. д. ЛОН по-прежнему остаются в первых рядах источника света, несмотря на некоторые недостатки. Их минусом является очень низкий КПД - не более 2–3 % от потребляемой энергии. Все остальное уходит в тепло.

Второй минус заключается в том, что ЛОН небезопасны с противопожарной точки зрения. Например, обычная газета, если ее положить на лампочку в 100 Вт, вспыхивает примерно через 20 мин. Надо ли говорить, что в некоторых местах ЛОН нельзя эксплуатировать, например в маленьких абажурах из пластика или дерева. Кроме того, такие лампы недолговечны. Срок службы ЛОН составляет примерно 500–1000 ч. К числу плюсов можно отнести дешевизну и простоту монтажа. ЛОН не требуют каких-либо дополнительных устройств для работы, подобно люминесцентным.

Галогенные лампы

Галогенные лампы мало чем отличаются от ламп накаливания, принцип работы тот же. Единственная разница между ними - это газовый состав в баллоне. В данных лампах к инертному газу примешивают йод или бром. В результате становится возможным повышение температуры нити накаливания и уменьшение испарения вольфрама.

Именно поэтому галогенные лампы можно делать более компактными, а срок их службы повышается в 2–3 раза. Однако температура нагревания стекла повышается весьма значительно, поэтому галогенные лампы делают из кварцевого материала. Они не терпят загрязнений на колбе. Прикасаться незащищенной рукой к баллону нельзя - лампа перегорит очень быстро.

Линейные галогенные лампы используются в переносных или стационарных прожекторах. В них часто бывают датчики движения. Такие лампы используют в гипсокартонных конструкциях.

Компактные осветительные устройства имеют зеркальное покрытие.

К минусам галогенных ламп можно отнести чувствительность к перепадам напряжения. Если оно «играет», лучше приобрести специальный трансформатор, выравнивающий силу тока.

Люминесцентные лампы

Принцип работы люминесцентных ламп серьезно отличается от ЛОН. Вместо вольфрамовой нити в стеклянной колбе такой лампы горят пары ртути под воздействием электрического тока. Свет газового разряда практически невидим, поскольку излучается в ультрафиолете. Последний заставляет светиться люминофор, которым покрыты стенки трубки. Этот свет мы и видим. Внешне и по способу соединения люминесцентные лампы также сильно отличаются от ЛОН. Вместо резьбового патрона с обеих сторон трубки есть два штырька, закрепляющихся следующим образом: их надо вставить в специальный патрон и повернуть в нем.

Люминесцентные лампы имеют низкую рабочую температуру. К их поверхности можно без опаски прислонять ладонь, поэтому они устанавливаются где угодно. Большая поверхность свечения создает ровный рассеянный свет. Именно поэтому их еще называют лампами дневного света . Кроме того, варьируя состав люминофора, можно изменять цвет светового излучения, делая его более приемлемым для человеческих глаз. По сроку службы люминесцентные лампы превосходят лампы накаливания почти в 10 раз.

Минусом люминесцентных ламп является невозможность прямого подключения к электросети. Нельзя просто накинуть 2 провода на торцы лампы и воткнуть вилку в розетку. Для ее включения используются специальные балласты. Связано это с физической природой свечения ламп. Наряду с электронными балластами используются стартеры, которые как бы поджигают лампу в момент включения. Большинство светильников под люминесцентные лампы оборудованы встроенными механизмами свечения наподобие электронных пускорегулирующих аппаратов (ПРА) или дросселями.

Маркировка люминесцентных ламп не похожа на простые обозначения ЛОН, имеющие только показатель мощности в ваттах.

Для рассматриваемых ламп она следующая:

  • ЛБ - белый свет;
  • ЛД - дневной свет;
  • ЛЕ - естественный свет;
  • ЛХБ - холодный свет;
  • ЛТБ - теплый свет.

Цифры, идущие за буквенной маркировкой, обозначают: первая цифра - степень цветопередачи, вторая и третья - температуру свечения. Чем выше степень цветопередачи, тем более естественно освещение для человеческого глаза. Рассмотрим пример, относящийся к температуре свечения: лампа с маркировкой ЛБ840 означает, что эта температура равна 4000 К, цвет белый, дневной.

Следующие значения расшифровывают маркировку ламп:

  • 2700 К - сверхтеплый белый,
  • 3000 К - теплый белый,
  • 4000 К - естественный белый или белый,
  • более 5000 К - холодный белый (дневной).

В последнее время появление на рынке компактных люминесцентных энергосберегающих ламп произвело настоящую революцию в светотехнике. Были устранены главные недостатки люминесцентных ламп - их громоздкие размеры и невозможность использовать обычные нарезные патроны. ПРА были вмонтированы в ламповый цоколь, а длинная трубка свернулась в компактную спираль.

Теперь разнообразие видов энергосберегающих ламп очень велико. Они различаются не только по своей мощности, но и по форме разрядных трубок. Плюсы такой лампы очевидны: нет нужды устанавливать электронный балласт для запуска, пользуясь специальными светильниками.

Экономичная люминесцентная лампа пришла на смену обычной лампе накаливания. Однако у нее, как и у всех люминесцентных ламп, есть недостатки.

Минусов у люминесцентных ламп несколько:

  • такие лампы плохо работают при низких температурах, а при –10 °C и ниже начинают светить тускло;
  • долгое время запуска - от нескольких секунд до нескольких минут;
  • слышен низкочастотный гул от электронного балласта;
  • не работают вместе со светорегуляторами;
  • сравнительно дорогие;
  • не любят частого включения и выключения;
  • в состав лампы входят вредные ртутные соединения, поэтому она требует специальной утилизации;
  • если использовать в выключателе индикаторы подсветки, данная осветительная аппаратура начинает мерцать.

Как бы ни старались производители, свет люминесцентных ламп пока не очень похож на естественный и режет глаза. Кроме энергосберегающих ламп с ПРА существует множество разновидностей без встроенного электронного балласта. Они имеют совершенно другие виды цоколя.

Принцип свечения дуговой ртутной лампы высокого давления (ДРЛ) - дуговой разряд в парах ртути. Такие лампы обладают высокой светоотдачей - на 1 Вт приходится 50–60 лм. Запускаются при помощи ПРА. Недостатком является спектр свечения - их свет холоден и резок. Лампы ДРЛ чаще всего используются для уличного освещения в светильниках типа «кобра».

Светодиодные лампы

Светодиодные лампы - этот продукт высокой технологии впервые был сконструирован в 1962 г. С той поры светодиодные лампы стали постепенно внедряться на рынок осветительной продукции. Светодиод по принципу действия - это самый обычный полупроводник, у которого часть энергии в переходе p-n сбрасывается в виде фотонов, то есть видимого света. Такие лампы имеют просто потрясающие характеристики.

Они десятикратно превосходят ЛОН по всем показаниям:

  • долговечности,
  • светоотдаче,
  • экономичности,
  • прочности и т. д.

Есть у них лишь одно «но» - это цена. Она приблизительно в 100 раз превосходит цену обычной лампы накаливания. Однако работа над этими необычными источниками света продолжается, и можно ожидать, что вскоре мы будем радоваться изобретению более дешевого, нежели его предшественники, образца.

Примечание! Ввиду необычных физических характеристик светодиодов из них можно изготавливать настоящие композиции, например в виде звездного неба на потолке комнаты. Это безопасно и не требует больших затрат энергии.