Cтраница 1


Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке. Для правильной работы компенсаторов необходимо четко фиксировать участок, удлинение которого он должен воспринимать, и обеспечить свободное перемещение трубопровода на этом участке. Для этого опоры трубопровода выполняют неподвижными и подвижными. Компенсатор должен воспринимать удлинение между двумя неподвижными опорами. Подвижные опоры позволяют трубопроводу свободно перемещаться в определенном направлении.  

Компенсация тепловых удлинений трубопровода может осуществляться как за счет самокомпенсации, так и путем установки компенсаторов.  

Компенсация тепловых удлинений трубопроводов производится одним из двух способов: 1) устройством трубопроводов с самокомпенсацией; 2) установкой компенсаторов различных типов.  

Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке.  

Компенсация тепловых удлинений трубопровода обеспечивается специальными устройствами. Для паропроводов низкого давления (до 0 5 МПа) применяют сальниковые или линзовые компенсаторы. Число волн в линзовом компенсаторе не должно превышать 12 во избежание продольного изгиба. В большинстве случаев для теплопроводов применяют гнутые компенсаторы, имеющие П - образную, лирообразную и другие формы. Их изготовляют на месте монтажа из тех же труб, что и трубопровод. Наибольшее распространение получил П - образный компенсатор.  

Компенсация тепловых удлинений трубопроводов производится одним.  

Защитный кожух - [ IMAGE ] Схема самокомпенсирующегося трубопровода.  

Компенсация тепловых удлинений трубопроводов достигается устройством трубопроводов с самокомпенсацией или установкой компенсаторов различных типов.  

Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке. Для правильной работы компенсаторов необходимо ограничить участок, удлинение которого он должен воспринимать, а также обеспечить свободное перемещение трубопровода на этом участке. Для этого опоры трубопровода выполняют неподвижными (мертвые точки) и подвижными. Неподвижные опоры фиксируют трубопровод в определенном положении и воспринимают усилия, появляющиеся в трубе даже при наличии компенсатора.  

Компенсацию теплового удлинения трубопровода предусматривают за счет углов поворотов трубопровода или применения П - образных компенсаторов.  

Размещение подвесных излучающих нотолочных (1 я настенных (2 панелей в помещении.| Зависимость расстояния от крайних подвесных излучающих панелей до стен / 3 от высоты их подвески Л. н.  

Существует ряд вариантов температурных удлинений компенсации в теплосетях. Компенсаторы гибкие производят из труб, имеют они чаще всего Г- или П-образную форму. Обычно, компенсаторы гибкие вне зависимости от способа теплопроводной прокладки укладывают в каналах сечения непроходного (нишах), что повторяют в плане форменный вид компенсатора.

В теплосетях подземных, главным образом на трубопроводах диаметра большого, чаще всего потребляются компенсаторы осевые типа скользящего (компенсаторы сальниковые). В областях установки компенсаторы сальниковые имеют свойство секционирования трубопроводов на участки, что не связаны металлически между собой. В данном случае при присутствии разности потенциалов между стаканом компенсатора и корпусом цепь электрическая замкнётся по воде, что может обусловить протекание процесса электрохимического, на внутренних поверхностях компенсатора сальникового коррозионных процессов. Но как показывает практика, во нередких случаях возникает связи металлическая между двумя частями компенсатора, вследствие контакта стакана с грундбуксом. В процессе использования компенсатора сальникового контакт металлический между частями его отдельным может иногда возникать и прерываться.

Компенсаторы сальниковые, арматуру запорную как и иное оборудование, что требует обслуживание, помещают в камеры что расположены друг от друга на не более 150-200 метров расстояния. Выполняются камеры из кладки кирпичной, бетона монолитного или железобетона. Из-за ощутимых оборудования габаритов обычно камеры имеют немаленькие размеры. Из-за того, что между ограждающими конструкциями и температурами оборудования резкое различие возникает в камерах постоянная конвекция воздуха влажного и как в результате этого конденсат на поверхностях, которые имеют температуру ниже точки росы.

В итоге, происходит в отдельных участках сосредоточенное увлажнение тепловой изоляции труб в камере и участках, что примыкают к ней, канала, капелью с перекрытий со стен, осуществляется через которые ввод в камеры труб, с помощью плёнки влаги, что стекает с щитовых плоскостей опор, что размещены в камерах. Ввод в камеры труб производится через окна специальные в стенках камер. Структура узла ввода имеет значение важное, главным образом для тепловых проводов прокладки бесканальной в связи с наличием возможности трубной просадки и в итоге этого деформации конструкции изоляции. Структурой ввода труб узла в камеры, обусловлена кроме того и уровень защищённости тепловой изоляции от аэрации и увлажнения на данном участке.

Для того, чтобы обеспечить компенсацию удлинений температурных на довольно коротких участках точки отдельные тепловых проводов фиксируют опорами неподвижными, а иная часть тепловых проводов перемещается свободно по отношению к этим опорам. Данным образом опоры неподвижные теплопровод делят на независимые по отношению к температурным удлинениям участки. Опоры при этом воспринимают усилия, что возникают в трубопроводах, при разновидных способах и схемах компенсации удлинений температурных. Установку опор неподвижных предусматривают при различных способах теплопроводной прокладки.

Участки установки опор неподвижных совмещают как обычно с узлами трубных ответвлений, точками расположения запорной аппаратуры на трубопроводах, компенсаторов сальниковых, грязевиков и иного оборудования. Расстояние между опорами неподвижными зависит основным образом от трубопроводного диаметра, температуры теплового носителя, и способности компенсации компенсаторов установленных. При температуре воды максимальной, что равна 150 градусам, для трубопроводов диаметром от 50-ти до 1000 миллиметров между опорами расстояния могут быть от 60 до 200 метров.

В виде несущей структуры в опорах неподвижных могут потребляться швеллеры стальные, балки железобетонные (опоры лобовые) или щиты железобетонные щиты (опоры щитовые). Опоры лобовые устанавливают обычно в камерах, опоры щитовые в данный момент более широко потребляемые, устанавливают в каналах и камерах. На участке трубного прохода через опору щитовую предполагается зазор. Трубы на данных участках иметь должны покрытие защитное, как и на иных трубных частях. Зазор промеж опор и труб быть должен, заполнен набивкой эластичной, которая предотвращает попадание влаги в зазор. В случае потребления набивок поглощающих влагу, как практика показала, на данном участке может произойти образование опасного очага коррозионных процессов. Опоры щитовые в нижней части своей иметь должны отверстия для пропускания воды и предотвращения грунтом заноса каналов.

Конструкции несущие опор неподвижных имеют контакты непосредственные с грунтом или через конструкцию ограждающие камер и каналов. Потому при отсутствии прокладок диэлектрических промеж упор (опоры лобовые) или кольцами опорными, (опоры щитовые) и конструкцией несущей опора неподвижная является заземлением теплопровода сосредоточенным, то есть элементов, что обуславливает вариант попадания токов блуждающих в теплосеть, а в вариантах потребления защиты электрохимической – элементом, что снижает эффективность её.

В процессе эксплуатации трубопроводы изменяют свою температуру в связи с изменением температуры окружающей среды и перекачиваемых жидкостей. Колебание температуры стенки трубопровода приводит к изменению его длины.

Закон изменения длины трубопровода выражается уравнением

Δ=α · l (t y - t o ),

где Δ - удлинение или укорочение трубопровода; а - коэффициент линейного расширения металла труб (для стальных труб α = 0,000012 1/°С); l - длина трубопровода; t y - температура укладки трубопровода; t 0 - температура окружающей среды.

Если концы трубопровода жестко закреплены, то от температурных воздействий в нем возникают термические напряжения растяжения или сжатия, величина которых определяется по закону Гука

где Е - модуль упругости материала трубы (для стали) E = 2,1·10 6 кг/см 2 =2,1·10 5 МПа).

Эти напряжения вызывают в точках закрепления трубопровода усилия, направленные вдоль оси трубопровода, не зависящие от длины, и равные

где σ - напряжение сжатия и растяжения, возникшее в трубе от изменения температуры; F - площадь живого сечения материа­ла трубы.

Величина N может быть очень большой и привести к раз­рушению трубопровода, арматуры, опор, а также нанести повре­ждения оборудованию (насосам, фильтрам и т.п.) и резервуарам.

Изменения длины подземных трубопроводов зависят не только от колебаний температуры, но и от силы трения трубы о грунт, которая препятствует изменениям длины.

Если усилия от термических напряжений не зависят от длины трубопровода, то сила трения трубы о грунт прямо про­порциональна длине трубопровода. Существует такая длина, на которой силы трения могут уравновеситься с термической силой, и трубопровод не будет иметь изменения длины. На участках меньшей длины трубопровод будет передвигаться в грунте.

Предельная длина такого участка 1 max , на котором возмож­но перемещение трубопровода в грунте, определяется по уравне­нию

где δ - толщина стенки трубы, см; k - давление грунта на по­верхность трубы, кг/см 2 ; μ - коэффициент трения трубы о грунт.

5.2. Компенсаторы

Разгрузка трубопроводов от термических напряжений осу­ществляется установкой компенсаторов. Компенсаторы - уст­ройства, позволяющие трубопроводам свободно удлиняться или сокращаться при изменении температуры без повреждения со­единений. Применяются линзовые, сальниковые, гнутые компен­саторы.

При выборе трассы трубопроводов необходимо стремиться к тому, чтобы температурные удлинения одних участков могли бы восприниматься деформациями других, т.е. стремиться к са­мокомпенсации трубопровода, используя для этого все его повороты и изгибы.

Линзовые компенсаторы (рис. 5.5) применяются для ком­пенсации удлинений трубопроводов с рабочим давлением до 0,6 МПа при диаметре от 150 до 1 200 мм.

Рис. 5.5. Компенсаторы линзовые с двумя фланцами

Компенсаторы изготавливают из конических тарелок (штампованных), каждая пара сваренных между собой тарелок образует волну. Количество волн в компенсаторе делают не более 12 во избежание продольного изгиба. Компенсирующая способ­ность линзовых компенсаторов составляет до 350 мм.

Линзовые компенсаторы характеризуются герметичностью,малыми габаритами, простотой изготовления и эксплуатации, но применение их ограничено непри­годностью для больших давлений. Сальниковые компенсато­ры (рис. 5.6) являются осевыми компенсаторами и применяются для давлений до 1,6 МПа. Компен­саторы состоят из чугунного или стального корпуса и входящего в него стакана. Уплотнение между стаканом и корпусом создается сальником. Компенсирующая спо­собность сальниковых компенсации ров составляет от 150 до 500 мм.

Сальниковые компенсатора устанавливаются на трубопроводе с точной укладкой, так как возможные перекосы могут привести к заеданию стакана и разрушения компенсатора. Сальниковые компенсаторы ненадежны в отношение герметичности, требуют постоянного надзора за уплотнением сальников и в связи с этим имеют ограниченное применение. Эти компенсаторы устанавливаются на трубопроводах диаметром от 100 мм и выше для негорючих жидкостей и на паропроводах.

Гнутые компенсаторы имеют П-образную (рис. 5.7), лирообразную, S-образную и другие формы и изго­тавливаются на месте монтажа из тех труб, из которых собирается тру­бопровод. Эти компенсаторы пригод­ны для любых давлений, уравновеше­ны и герметичны. Недостатками их являются значительные габариты.

Для трубопроводов из полимерных материалов применяются подвижные опоры, допускающие перемещение трубопровода в продольном направлении, и неподвижные, не допускающие таких перемещений.

В местах прохода через строительные конструкции трубы из полимерных материалов необходимо прокладывать в гильзах. Длина гильзы должна превышать толщину строительных конструкций на толщину отделочных материалов стен и возвышаться над поверхностью пола на 20 мм. Стыки труб в гильзах располагать не допускается.

Неподвижные опоры на трубах следует выполнять с помощью приваренных или приклеенных к телу трубы упорных колец, муфт для труб диаметром до 160 мм или сегментов труб – для труб диаметром больше 160 мм. Крепление трубы путем ее заневоливания (создания сжимающей нагрузки) не допускается.

В качестве подвижных опор применяются подвески или хомуты, выполненные из металла или полимерного материала, внутренний диаметр которых должен быть на 1-3 мм больше наружного диаметра монтируемого трубопровода. Между трубопроводом и металлическим хомутом следует располагать прокладку из мягкого материала. Ширина прокладки должна превышать ширину хомута на менее чем на 2 мм.

Неподвижные опоры необходимо располагать таким образом, чтобы температурные изменения длины участков трубопровода не превышали компенсирующей возможности этих участков.

Величину температурного изменения длины трубопровода определяется по формуле:

Где - коэффициент теплового линейного расширения материала трубы, ;

Разность между максимальной и минимальной температурами трубопровода;

Длина трубопровода, м.

Продольное усилие в трубе возникающее при изменении температуры, без учета компенсации температурных деформаций, определяется по формуле:

, где - модуль упругости материала трубы, МПа;

Площадь поперечного сечения стенки трубы, м 2 .

Температурные напряжения необходимо учитывать в любом закрепленном участке трубопровода при любой длине участка.

В качестве компенсирующих элементов на трубопроводе могут быть отводы, петлеобразные, П-образные, сильфонные и другие виды компенсаторов. Компенсирующая способность отвода под углом 90 0 определяется по формуле (см. рис. 1):

, где - максимальное допустимое продольное перемещение трубопровода от действия температуры, которое может быть компенсировано отводом, м;

Длина прилегающего к отводу прямого участка трубопровода до подвижной опоры, м;

Радиус изгиба отвода, м;

Наружные диаметр труб, м;

Расчетная прочность, МПа.

Рис. 1. Схема компенсации температурных удлинений отводом.

Компенсирующая способность П-образного отвода определяется по формуле (см. рис. 2):

Где - максимально допустимое продольное перемещение трубопровода от действия температуры, которое может быть воспринято компенсатором, м;

Вылет компенсатора, м;

Радиус изгиба отводов компенсатора, м;

Длина прямого участка компенсатора, м;

Наружный диаметр трубы, м;

Допускаемое напряжение из условий длительной прочности, МПа.

Максимальное допустимое расстояние от оси компенсатора до оси неподвижной опоры трубопровода , см, должно вычисляться по формуле:

.

Расстояние от оси трубы отвода до оси установки скользящей опоры следует принимать равным:

Где - коэффициент, определяемый прочностными и упругими свойствами полимерного материала труб по формуле:

Рис. 2. Схема компенсации температурных удлинений П-образным компенсатором.

Компенсирующая способность трубопровода может быть повышена за счет введения дополнительных поворотов, спусков и подъемов. Компенсирующая способность полимерных трубопроводов может быть обеспечена подольным изгибом при укладке их в виде змейки не опоре, ширина которой должна допускать возможность изгиба трубопровода при перепаде температур.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04

Компенсация температурных деформаций стальных трубопроводов имеет исключительно важное значение в технике транспорта теплоты.

Если в трубопроводе отсутствует компенсация температурных деформаций, то при сильном нагревании в стенке трубопровода могут возникнуть большие разрушающие напряжения. Значение этих напряжений может быть рассчитано по закону Гука

, (7.1)

где Е – модуль продольной упругости (для стали Е = 2 10 5 МПа); i – относительная деформация.

При повышении температуры трубы длиной l на Dt удлинение должно составить

где a – коэффициент линейного удлинения, 1/К (для углеродистой стали a= 12-10 -6 1/К).

Если участок трубы защемлен и при нагревании не удлиняется, то его относительное сжатие

Из совместного решения (7.1) и (7.3) можно найти напряжение сжатия, возникающее в стальной трубе при нагреве прямолинейного защемленного (без компенсаторов) участка трубопровода

Для стали s= 2,35 Dt МПа.

Как видно из (7.4), напряжение сжатия, возникающее в защемленном прямолинейном участке трубопровода, не зависит от диаметра, толщины стенки и длины трубопровода, а зависит только от материала (модуля упругости и коэффициента линейного удлинения) и перепада температур.

Усилие сжатия, возникающее при нагревании прямолинейного трубопровода без компенсации, определяется по формуле

, (7.5)

где f – площадь поперечного сечения стенок трубопровода, м 2 .

По своему характеру все компенсаторы могут быть разбиты на две группы: осевые и радиальные.

Осевые компенсаторы применяются для компенсации температурных удлинений прямолинейных участков трубопровода.

Радиальная компенсация может быть использована при любой конфигурации трубопровода. Радиальная компенсация широко применяется на теплопроводах, прокладываемых на территориях промышленных предприятий, а при небольших диаметрах теплопроводов (до 200 мм) – также и в городских тепловых сетях. На теплопроводах большого диаметра, прокладываемых под городскими проездами, устанавливаются главным образом осевые компенсаторы.



Осевая компенсация. На практике находят применение осевые компенсаторы двух типов: сальниковые и упругие.

На рис. 7.27 показан односторонний сальниковый компенсатор. Между стаканом 1 и корпусом 2 компенсатора располагается сальниковое уплотнение 3. Сальниковая набивка, обеспечивающая плотность, зажимается между упорным кольцом 4 и грундбуксой 5. Обычно набивка выполняется из асбестовых колец квадратного сечения, пропитанных графитом. Компенсатор вваривается в трубопровод, поэтому установка его на линии не приводит к увеличению количества фланцевых соединений.

Рис. 7.27. Односторонний сальниковый компенсатор:
1 – стакан; 2 – корпус; 3 – набивка; 4 – упорное кольцо; 5 – грундбукса

На рис. 7.28 приведен разрез двухстороннего сальникового компенсатора. Недостатком сальниковых компенсаторов всех типов является сальник, требующий систематического и тщательного ухода в эксплуатации. Набивка в сальниковом компенсаторе изнашивается, теряет со временем упругость и начинает пропускать теплоноситель. Подтяжка сальника в этих случаях не дает положительных результатов, поэтому через определенные периоды времени сальники приходится перебивать.

Рис. 7.28. Двухсторонний сальниковый компенсатор

От этого недостатка свободны все типы упругих компенсаторов.

На рис. 7.29 показана секция трехволнового сильфонного компенсатора. Для уменьшения гидравлического сопротивления внутри сильфонной секции вварена гладкая труба. Сильфонные секции выполняются обычно из легированных сталей или сплавов.
В нашей стране сильфонные компенсаторы изготовляются из стали 08Х18Н10Т.

Рис. 7.29. Трехволновой сильфонный компенсатор

Компенсирующая способность сильфонных компенсаторов определяется обычно по результатам испытаний или принимается по данным заводов-изготовителей. Для компенсации больших термических деформаций соединяют последовательно несколько сильфонных секций.

Осевая реакция сильфонных компенсаторов представляет собой сумму двух слагаемых

, (7.6)

где s к – осевая реакция от температурной компенсации, вызываемая деформацией волны при термическом расширении трубопровода, Н; s д – осевая реакция, вызываемая внутренним давлением, Н.

Для повышения устойчивости против деформации сильфонов под действием внутреннего давления компенсаторы выполняются разгруженными от внутреннего давления путем соответствующей компоновки сильфонных секций в корпусе компенсатора, выполняемого из трубы большего диаметра. Такая конструкция компенсатора показана на рис. 7.30.

Рис. 7.30. Разгруженный сильфонный компенсатор:
l р – длина в растянутом состоянии; l сж – длина в сжатом состоянии

Перспективным методом компенсации температурных деформаций может служить применение самокомпенсирующихся труб. При производстве спирально-сварных труб из полосы листового металла на нем роликом выдавливается продольная канавка глубиной примерно 35 мм. После сварки такого листа канавка превращается в спиральный гофр, способный компенсировать температурную деформацию трубопровода. Опытная проверка таких труб показала положительные результаты.

Радиальная компенсация. При радиальной компенсации термическая деформация трубопровода воспринимается изгибами специальных эластичных вставок или естественными поворотами (изгибами) трассы отдельных участков самого трубопровода.

Последний метод компенсации термических деформаций, широко используемый в практике, называется естественной компенсацией. Преимущества этого вида компенсации над другими видами: простота устройства, надежность, отсутствие необходимости в надзоре и уходе, разгруженность неподвижных опор от усилий внутреннего давления. Недостаток естественной компенсации – поперечное перемещение деформируемых участков трубопровода, требующее увеличения ширины непроходных каналов и затрудняющее применение засыпных изоляций и бесканальных конструкций.

Расчет естественной компенсации заключается в нахождении усилий и напряжений, возникающих в трубопроводе под действием упругой деформации, выборе длин взаимодействующих плеч трубопровода и определении поперечного смещения его участков при компенсации. Методика расчета базируется на основных законах теории упругости, связывающих деформации с действующими усилиями.

Участки трубопровода, воспринимающие температурные деформации при естественной компенсации, состоят из отводов (колен) и прямых участков. Гнутые отводы повышают гибкость трубопровода и увеличивают его компенсирующую способность. Влияние гнутых колен на компенсирующую способность особенно заметно в трубопроводах большого диаметра.

Изгиб кривых участков труб сопровождается сплющиванием поперечного сечения, которое превращается из круглого в эллиптическое.

На рис. 7.31 показана изогнутая труба с радиусом кривизны R. Выделим двумя сечениями аb и cd элемент трубы. При изгибе в стенке трубы с выпуклой стороны возникают растягивающие, а с вогнутой – сжимающие усилия. Как растягивающие, так и сжимающие усилия дают равнодействующие Т, нормальные к нейтральной оси.


Рис. 7.31. Сплющивание трубы при изгибе

Компенсирующая способность компенсаторов может быть увеличена вдвое при предварительной растяжке их во время монтажа на величину, равную половине теплового удлинения трубопровода. На основе вышеизложенной методики получены уравнения для расчета максимального изгибающего напряжения и компенсирующей способности симметричных компенсаторов различного типа.

Тепловой расчет

В задачу теплового расчета входит решение следующих вопросов:

· определение тепловых потерь теплопровода;

· расчет температурного поля вокруг теплопровода, т. е. определение температур изоляции, воздуха в канале, стен канала, грунта.

· расчет падения температуры теплоносителя вдоль теплопровода;

· выбор толщины тепловой изоляции теплопровода.

Количество теплоты, проходящей в единицу времени через цепь последовательно соединенных термических сопротивлений, вычисляется по формуле

где q – удельные тепловые потери теплопровода; t – температура теплоносителя, °С; t o – температура окружающей среды, °С; R – суммарное термическое сопротивление цепи теплоноситель – окружающая среда (термическое сопротивление изоляции теплопровода).

При тепловом расчете тепловых сетей приходится обычно определять тепловые потоки через слои и поверхности цилиндрической формы.

Удельные тепловые потери q и термические сопротивления R относят обычно к единице длины теплопровода и измеряют их соответственно в Вт/м и (м К)/Вт.

В изолированном трубопроводе, окруженном наружным воздухом, теплота должна пройти через четыре последовательно соединенных сопротивления: внутреннюю поверхность рабочей трубы, стенку трубы, слой изоляции и наружную поверхность изоляции. Так как суммарное сопротивление равно арифметической сумме последовательно соединенных сопротивлений, то

R = R в + R тр + R и + R н , (7.8)

где R в , R тр , R и и R н – термические сопротивления внутренней поверхности рабочей трубы, стенки трубы, слоя изоляции и наружной поверхности изоляции.

В изолированных теплопроводах основное значение имеет термическое сопротивление слоя тепловой изоляции.

В тепловом расчете встречаются два вида термических сопротивлений:

· сопротивление поверхности;

· сопротивление слоя.

Термическое сопротивление поверхности. Термическое сопротивление цилиндрической поверхности составляет

где pd – площадь поверхности 1 м длины теплопровода, м; a – коэффициент теплоотдачи от поверхности.

Для определения термического сопротивления поверхности теплопровода необходимо знать две величины: диаметр теплопровода и коэффициент теплоотдачи поверхности. Диаметр теплопровода при тепловом расчете является заданным. Коэффициент теплоотдачи от наружной поверхности теплопровода к окружающему воздуху представляет собой сумму двух слагаемых – коэффициента теплоотдачи излучением a л и коэффициента теплоотдачи конвекцией a к :

Коэффициент теплоотдачи излучением a л может быть подсчитан по формуле Стефана-Больцмана:

, (7.10)

где С – коэффициент излучения; t – температура излучающей поверхности, °С.

Коэффициент излучения абсолютно черного тела, т.е. поверхности, которая поглощает все падающие на нее лучи и ничего не отражает, С = 5,7 Вт/(м К) = 4,9 ккал/(ч м 2 К 4).

Коэффициент излучения «серых» тел, к которым относятся поверхности неизолированных трубопроводов, изоляционных конструкций, имеет значение 4,4 – 5,0 Вт/(м 2 К 4). Коэффициент теплоотдачи от горизонтальной трубы к воздуху при естественной конвекции, Вт/(м К), можно определить по формуле Нуссельта

, (7.11)

где d – наружный диаметр теплопровода, м; t , t о – температуры поверхности и окружающей среды, °С.

При вынужденной конвекции воздуха или ветра коэффициент теплоотдачи

, (7.12)

где w – скорость воздуха, м/с.

Формула (7.12) действительна при w > 1 м/с и d > 0,3 м.

Для вычисления коэффициента теплоотдачи по (7.10) и (7.11) необходимо знать температуру поверхности. Так как при определении тепловых потерь температура поверхности теплопровода обычно заранее неизвестна, задача решается методом последовательных приближений. Предварительно задаются коэффициентом теплоотдачи наружной поверхности теплопровода a , находят удельные потери q и температуру поверхности t , проверяют правильность принятого значения a .

При определении тепловых потерь изолированных теплопроводов проверочного расчета можно не проводить, так как термическое сопротивление поверхности изоляции невелико по сравнению с термическим сопротивлением ее слоя. Так, 100%-ная ошибка при выборе коэффициента теплоотдачи поверхности приводит обычно к ошибке в определении теплопотерь 3 – 5%.

Для предварительного определения коэффициента теплоотдачи поверхности изолированного теплопровода, Вт/(м К), когда температура поверхности неизвестна, может быть рекомендована формула

, (7.13)

где w – скорость движения воздуха, м/с.

Коэффициенты теплоотдачи от теплоносителя к внутренней поверхности трубопровода весьма высоки, что определяет столь малые значения термического сопротивления внутренней поверхности трубопровода, которыми при практических расчетах можно пренебречь.

Термическое сопротивление слоя. Выражение для термического сопротивления однородного цилиндрического слоя легко выводится из уравнения Фурье, которое имеет вид

где l – теплопроводность слоя; d 1 , d 2 – внутренний и наружный диаметры слоя.

Для теплового расчета существенное значение имеют только слои с большим термическим сопротивлением. Такими слоями являются тепловая изоляция, стенка канала, массив грунта. По этим соображениям при тепловом расчете изолированных теплопроводов обычно не учитывается термическое сопротивление металлической стенки рабочей трубы.

Термическое сопротивление изоляционных конструкций надземных теплопроводов. В надземных теплопроводах между теплоносителем и наружным воздухом включены последовательно следующие термические сопротивления: внутренняя поверхность рабочей трубы, ее стенка, один или несколько слоев тепловой изоляции, наружная поверхность теплопровода.

Первыми двумя тепловыми сопротивлениями в практических расчетах обычно пренебрегают.

Иногда тепловую изоляцию выполняют многослойной, исходя из различных допустимых температур для применяемых изоляционных материалов или из экономических соображений с целью частичной замены дорогих материалов изоляции более дешевыми.

Термическое сопротивление многослойной изоляции равно арифметической сумме термических сопротивлений последовательно наложенных слоев.

Термическое сопротивление цилиндрической изоляции увеличивается с увеличением отношения ее наружного диаметра к внутреннему. Поэтому в многослойной изоляции первые слои целесообразно укладывать из материала, имеющего более низкую теплопроводность, что приводит к наиболее эффективному использованию изоляционных материалов.

Температурное поле надземного теплопровода. Расчет температурного поля теплопровода проводится на основании уравнения теплового баланса. При этом исходят из условия, что при установившемся тепловом состоянии количество теплоты, протекающей от теплоносителя к концентрической цилиндрической поверхности, проходящей через любую точку поля, равно количеству теплоты, уходящей от этой концентрической поверхности к наружной среде.

Температура поверхности теплоизоляции из уравнения теплового баланса будет равна

. (7.15)

Термическое сопротивление грунта. В подземных теплопроводах в качестве одного из последовательно включенных термических сопротивлений участвует сопротивление грунта.

При подсчете тепловых потерь за температуру окружающей среды t о принимают, как правило, естественную температуру грунта на глубине заложения оси теплопровода.

Только при малых глубинах заложения оси теплопровода (h/d < 2) за температуру окружающей среды принимают естественную температуру поверхности грунта.

Термическое сопротивление грунта может быть определено по формуле Форхгеймера (рис. 7.32)

, (7.16)

где l – теплопроводность грунта; h – глубина заложения оси теплопровода; d – диаметр теплопровода.

При укладке подземных теплопроводов в каналах, имеющих форму, отличную от цилиндрической, в (7.16) вместо диаметра подставляют эквивалентный диаметр

где F – площадь сечения канала, м; П – периметр канала, м.

Теплопроводность грунта зависит главным образом от его влажности и температуры.

При температурах грунта 10 – 40 °С теплопроводность грунта средней влажности лежит в пределах 1,2 – 2,5 Вт/(м К).