Документ

Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...

  • Таблица первообразных

    Определение. Функция F(x) на заданном промежутке называется первообразной для функции f(x) , для всех x из этого промежутка, если F"(x)=f(x) .

    Операция нахождение первообразной для функции называется интегрированием . Она является обратной к операции дифференцирования.

    Теорема. Всякая непрерывная на промежутке функция (x) имеет первообразную на этом же промежутке.

    Теорема (основное свойство первообразной). Если на некотором промежутке функция F(x) является первообразной для функции f(x ), то на этом промежутке первообразной для f(x) будет также функция F(x)+C , где C произвольная постоянная.

    Из этой теоремы выплывает, что когда f(x) имеет на заданном промежутке первообразную функцию F(x) , то этих первобытных множество. Придавая C произвольных числовых значений, каждый раз будем получать первообразную функцию.

    Для нахождения первообразных пользуются таблицей первообразных . Она получается из таблицы производных.

    Понятие неопределенного интеграла

    Определение. Совокупность всех первообразных функций для функции f(x) называется неопределенным интегралом и обозначается .

    При этом f(x) называется подынтегральной функцией , а f(x) dx - подынтегральным выражением .

    Следовательно, если F(x) , является первообразной для f(x) , то .

    Свойства неопределенного интеграла

    Понятие определенного интеграла

    Рассмотрим плоскую фигуру, ограниченную графиком непрерывной и неотрицательной на отрезке [а; b] функции f(x) , отрезком [а; b] , и прямыми x=a и x=b .

    Полученная фигура называется криволинейной трапецией . Вычислим ее площадь.

    Для этого разобьем отрезок [а; b] на n равных отрезков. Длины каждого из отрезков равняются Δx .

    Это динамический рисунок GeoGebra .
    Красные элементы можно изменять

    Рис. 1. Понятие определенное интеграла

    На каждом отрезке, построим прямоугольники с высотами f(x k-1) (Рис. 1).

    Площадь каждого такого прямоугольника равняется S k = f(x k-1)Δx k .

    Площадь всех таких прямоугольников равняется .

    Эту сумму называют интегральной суммой для функции f(x) .

    Если n→∞ то площадь построенной таким образом фигуры будет все менее отличаться от площади криволинейной трапеции.

    Определение. Граница интегральной суммы, когда n→∞ называется определенным интегралом , и записывается так:.

    читается: "интеграл от a к b f от xdx "

    Число а называется нижним пределом интегрирования, b – верхним пределом интегрирования, отрезок [а; b] – промежутком интегрирования.

    Свойства определенного интеграла

    Формула Ньютона-Лейбница

    Определенный интеграл тесно связан с первообразной и неопределенным интегралом формулой Ньютона-Лейбница

    .

    Использование интеграла

    Интегральное исчисление широко используется при решении разнообразных практических задач. Рассмотрим некоторые из них.

    Вычисление объемов тел

    Пусть задана функция, которая задает площадь поперечного сечения тела в зависимости от некоторой переменной S = s(x), x[а; b] . Тогда объем данного тела можно найти интегрируя данную функцию в соответствующих пределах.

    Если нам задано тело, которое получено вращением вокруг оси Ох криволинейной трапеции ограниченной некоторой функцией f(x), x [а; b] . (Рис. 3). То площади поперечных сечений можно вычислить по известной формуле S = π f 2 (x) . Поэтому формула объема такого тела вращения

    Цель:

    • Формирование понятия первообразной.
    • Подготовка к восприятию интеграла.
    • Формирование вычислительных навыков.
    • Воспитание чувства прекрасного (умение видеть красоту в необычном).

    Математический анализ - совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

    Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.

    Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

    Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

    Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

    Пример №1 .

    Пусть (х)`=3х 2 .
    Найдем f(х).

    Решение:

    Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо (х 3)`=3х 2
    Однако, легко можно заметить, что f(х) находится неоднозначно.
    В качестве f(х) можно взять
    f(х)= х 3 +1
    f(х)= х 3 +2
    f(х)= х 3 -3 и др.

    Т.к.производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

    Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х 2

    Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
    Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

    Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).

    Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
    F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

    Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
    т.к. F`(х)=(tg3х)`= 3/cos 2 3х

    Пример № 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
    т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

    Лекция 2.

    Тема: Первообразная. Основное свойство первообразной функции.

    При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.

    Это утверждение можно продемонстрировать геометрически.

    Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х 0 . Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.

    Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.

    Действительно, для произвольного х 1 и х 2 из промежутка J по теореме о среднем значении функции можно записать:
    f(х 2)- f(х 1)=f`(с) (х 2 - х 1), т.к. f`(с)=0, то f(х 2)= f(х 1)

    Теорема: (Основное свойство первообразной функции)

    Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

    Доказательство:

    Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
    Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
    тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
    Это означает, что Φ(х)- F(х) постоянна на промежутке J.
    Следовательно, Φ(х)- F(х) = С.
    Откуда Φ(х)= F(х)+С.
    Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
    Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.

    Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

    Решение: Sin х - одна из первообразных для функции f (х) = cos х
    F(х) = Sin х+С –множество всех первообразных.

    F 1 (х) = Sin х-1
    F 2 (х) = Sin х
    F 3 (х) = Sin х+1

    Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

    Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

    Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
    Следовательно, 4 = 1 2 +С
    С = 3
    F(х) = х 2 +3

    Неопределенный интеграл

    Основной задачей дифференциального исчисления было вычисление производной или дифференциала заданной функции. Интегральное исчисление, к изучению которого мы переходим, решает обратную задачу, а именно, отыскания самой функции по ее производной или дифференциалу. То есть, имея dF(х)= f(х)d (7.1) или F ′(х)= f(х) ,

    где f(х) - известная функция, надо найти функцию F(х) .

    Определение: Функция F(х) называется первообразной функции f(х) на отрезке , если во всех точках этого отрезка выполняется равенство: F′(х) = f(х) или dF(х)= f(х)d .

    Например , одной из первообразных функций для функции f(х)=3х 2 будет F(х)= х 3 , т.к. (х 3)′=3х 2 . Но первоообразной для функции f(х)=3х 2 будет также и функции и , т.к. .

    Итак, данная функция f(х)=3х 2 имеет бесконечное множество первоообразных, каждая из которых отличается лишь на постоянное слагаемое. Покажем, что этот результат имеет место и в общем случае.

    Теорема Две различные первообразные одной и той же функции, определенной в некотором промежутке, отличаются одна от другой на этом промежутке на постоянное слагаемое.

    Доказательство

    Пусть функция f(х) определена на промежутке (a¸b) и F 1 (х) и F 2 (х) - первообразные, т.е. F 1 ′(х)= f(х) и F 2 ′(х)= f(х) .

    Тогда F 1 ′(х)=F 2 ′(х)Þ F 1 ′(х) - F 2 ′(х) = (F 1 ′(х) - F 2 (х))′= 0 . Þ F 1 (х) - F 2 (х)=С

    Отсюда, F 2 (х) = F 1 (х)+С

    где С - константа (здесь использовано следствие из теоремы Лагранжа).

    Теорема, таким образом, доказана.

    Геометрическая иллюстрация . Если у = F 1 (х) и у = F 2 (х) – первообразные одной и той же функции f(х) , то касательная к их графикам в точках с общей абсциссой х параллельны между собой (рис. 7.1).

    В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным F 2 (х) - F 1 (х)=С , то есть эти кривые в некотором понимании "параллельны" одна другой.

    Следствие .

    Прибавляя к какой-то первообразной F(х) для данной функции f(х) , определенной на промежутке Х , все возможные постоянные С , мы получим все возможные первообразные для функции f(х) .

    Итак, выражение F(х)+С , где , а F(х) – некоторая первообразная функции f(х) включает все возможные первообразные для f(х) .

    Пример 1. Проверить, являются ли функции первообразными для функции

    Решение:

    Ответ : первообразными для функции будут функции и

    Определение: Если функция F(х) является некоторой первообразной для функции f(х), то множество всех первообразных F(х)+ С называют неопределенным интегралом от f(х) и обозначают:

    ∫f(х)dх.

    По определению:

    f(х) - подынтегральная функция,

    f(х)dх - подынтегральное выражение

    Из этого следует, чтоо неопределенный интеграл является функцией общего вида, дифференциал которой равен подынтегральному выражению, а производная от которой по переменной х равна подынтегральной функции во всех точках .

    С геометрической точки зрения неопределенный интеграл представляет собой семейство кривых, каждая из которых получается путем сдвига одной из кривых параллельно самой себе вверх или вниз, то есть вдоль оси Оу (рис. 7.2).

    Операция вычисления неопределенного интеграла от некоторой функции называется интегрированием этой функции.

    Отметим, что если производная от элементарной функции всегда является элементарной функцией, то первоообразная от элементарной функции может не представляться при помощи конечного числа элементарных функций.

    Рассмотрим теперь свойства неопределенного интеграла .

    Из определения 2 вытекает:

    1. Производная от неопределенного интеграла равна подынтегральной функции, то есть, если F′(х) = f(х) , то

    2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

    . (7.4)

    Из определения дифференциала и свойства (7.3)

    3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть (7.5)

    Первообразная функция и неопределённый интеграл

    Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

    Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

    Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

    Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

    f (x )dx

    ,

    где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

    Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

    f (x )dx = F (x ) +C

    где C - произвольная постоянная (константа).

    Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

    Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

    Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

    Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

    Пример 1. Найти множество первообразных функции

    Решение. Для данной функции первообразной является функция

    Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

    (2)

    Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

    где С – произвольная постоянная. В этом можно убедиться дифференцированием.

    Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

    Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

    В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

    Пример 2. Найти множества первообразных функций:

    Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

    1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

    2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

    3) Так как

    то по формуле (7) при n = -1/4 найдём

    Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

    , ;

    здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

    Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

    Геометрический смысл неопределённого интеграла

    Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

    Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

    Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

    Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

    Свойства неопределённого интеграла

    Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

    Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

    (3)

    Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

    Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.