Визуализация данных самого разного рода, имеющих некое географическое распределение, в последнее время получает все большее и большее распространение. Тут, на Хабре, статьи с картами встречаются чуть ли не каждую неделю. Карты в статьях очень разные, но роднит их одно: как правило, в них используются всего две картографические проекции, при том - не самые удачные из существующих. Мне бы хотелось дать несколько наглядных примеров проекций, которые выглядят более эстетично и лучше приспособлены для разных видов визуализации. В этой статье будут рассмотрены общемировые проекции и проекции большей части Земли, так как визуализация чего-либо на карте мира, пожалуй, является наиболее распространенной из подобных задач.

Легкое введение

Поскольку статья ориентирована на вопросы визуализации данных, я не буду касаться глубоко теории проекций (датумов, конформности, равноугольности и тому подобного), кроме общих принципов их построения. Также, я буду говорить тут о «проекциях», формально подразумевая «систему координат», coordinate reference system, потому что для карт таких масштабов не имеет смысла отдельно рассматривать проекцию и датум. Математики здесь тоже практически не будет, кроме простой геометрии. Желающие ознакомиться с математическими принципами, могут это сделать по статьям на Wolfram MathWorld . Так что изучающим программирование в области геоинформационных систем или их опытным пользователям, эта статья, возможно, будет не очень полезна.

Перед началом, объясню пару вещей. Все примеры будут даваться с использованием набора данных государственных границ с вот этого сайта и набора данных Blue Marble Next Generation с сайта NASA . Последний включает в себя синтезированные безоблачные снимки земной поверхности за каждый из двенадцати месяцев 2004-го года, что позволит внести некоторое разнообразие в иллюстрации.

Я очень люблю открытый софт, но использовать GDAL в данном случае мне показалось неэффективно - некоторых не очень ходовых, но полезных проекций в его реализации на данный момент либо нет, либо я плохо смотрел исходники, а потому иллюстрации я готовил в коммерческой программе GlobalMapper, которой пользуюсь уже много лет, и которая славится поддержкой внушительного списка систем координат.

Названия проекций и некоторые термины я буду давать и англоязычные, потому что если кому-то захочется поискать материалы по этой теме, русскоязычных источников в сети найдется несколько меньше (объем статей в Википедии на русском меньше в несколько раз). Для большинства проекций я постараюсь дать не только названия, но и коды EPSG и/или WKID, а также название проекции в библиотеке PROJ.4 , широко используемой в открытом софте (например, в пакете R) для поддержки систем координат.

Некоторые проекции, возможно, окажутся кому-то знакомыми по картинке с xkcd , но все из них тут рассмотрены не будут.

Проблема

Начнем с того, что же это за самые распространенные проекции, и что с ними не так.

Первая проекция - так называемая «Географическая» , она же – Geographic projection, Latitude/Longitude, Plate carrée EPSG:4326 WKID:54001 PROJ.4:longlat . Строго говоря, она даже не совсем является проекцией, потому что получается путем интерпретации полярных угловых координат, как линейных прямоугольных, без всяких вычислений. Эту проекцию используют, потому что она способна отобразить всю поверхность Земли целиком и потому, что она самая простая математически, а данные очень часто распространяются не спроецированными, то есть именно в географических координатах (градусах широты и долготы).

Что же получается? Получается прямоугольник, где точки полюсов обращены в линии (верхнюю и нижнюю границы). Чем дальше от экватора, тем сильнее любой объект на карте оказывается сплюснут по вертикали и растянут по горизонтали. Как я уже сказал, это худо-бедно годится для отображения глобальных наборов данных, но полярные территории (Канада, Норвегия, Швеция, север России, Финляндия, Гренландия, Антарктида, Исландия) оказываются искажены. Проекции, которые позволяют избежать этого, существуют, и о них пойдет речь дальше. Единственная причина использовать эту проекцию - ее предельная простота программной реализации - нужно просто отобразить систему координат от -180º до 180º по X и от -90º до 90º по Y на плоскость, считая угловые единицы линейными.

Другая весьма популярная проекция - «проекция Меркатора» , Mercator projection PROJ.4:merc . Она также используется для визуализации данных, покрывающих весь мир, но ее популярность продиктована не только простотой - ее варианты являются стандартом де-факто для глобальных картографических сервисов, таких как Google Maps, Bing Maps, Here. С ней глубоко связаны картографические библиотеки OpenLayers, Leaflet, API упомянутых выше сервисов. В варианте Google и OpenStreetMap она носит название Web Mercator и имеет код EPSG/WKID:3857 , иногда на нее также ссылаются, как на EPSG:900913 . Принцип ее построения не сильно сложнее Географической – это проекция на цилиндр, чья ось совпадает с географической осью Земли, проецирование происходит линиями, выходящими из центра планеты, от чего ошибка растяжения приполярных областей по горизонтали оказывается скомпенсирована пропорциональным растяжением по вертикали. Проблема с этим только в том, что карта получится слишком большой по вертикали, если попытаться отобразить и север Гренландии. Потому обычно отбрасывают 16° полярных областей (в равной пропорции или больше - с юга).

На чей-то взгляд выглядит чуть лучше, чем Географическая, но одну проблему мы уже упомянули, а вторая - чем ближе объект к полюсам, тем он кажется больше, хотя его форма уже не так искажена. Потому, если предмет визуализации - плотность маркеров на единицу территории или расстояния, такой способ отображения будет вводить в заблуждение. При грамотном выборе способа визуализации, конечно, это можно скомпенсировать, а для каких-то случаев это вообще не проблема: например, если величина какого-то показателя в целой стране соотнесена с цветом этой страны на карте, эффект растяжения площадей не сказывается. Эта проекция сохраняет только форму объектов, потому очертания континентов и стран выглядят довольно узнаваемо. И, как я уже сказал, она - ваш первый и самый простой вариант при создании интерактивных веб-карт.

Варианты решения

Что же делать с глобальными данными, если нам по какой-то причине понадобилась проекция, лучше сохраняющая такие свойства объектов, как форма, площадь, расстояния и углы? Законы геометрии не дают нам сохранить все эти свойства сразу, развернув круглую поверхность Земли на плоскость. Однако, для визуализации данных более всего важна эстетика и восприятие, а не сохранение свойств, как для навигационных или измерительных задач. Потому становится возможным подобрать такую проекцию, искажения в которой были бы равномерно распределены по свойствам. И таких проекций существует довольно много. Существуют три самых известных, обладающих сходными свойствами: Winkel Tripel WKID:54042 PROJ.4:wintri , «проекция Робинсона» Robinson projection WKID:54030 PROJ.4:robin , «проекция Каврайского» (Kavrayskiy projection). Первая и последняя имеют визуально минимальные искажения, а неспециалисту, не видя градусной сетки, вообще весьма сложно различить их, потому я приведу иллюстрацию для Winkel Tripel, как той, которая лично мне нравится больше всего.

Вот так описание этой проекции выглядит в формате ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",

],
PRIMEM["Greenwich",0],

],
PROJECTION["Robinson"],
PARAMETER["central_meridian",0],


UNIT["Meter",1]
]

Как легко видеть, хотя искажение контуров и некоторое увеличение площади стран к полюсам здесь также наблюдаются, но это нельзя даже сравнивать с растяжением Географической проекции и пропорциональным увеличением проекции Меркатора.

Тут стоит сделать небольшое отступление и обратить внимание на то, что вид этой проекции по умолчанию страдает одним недостатком, который касается и других общемировых проекций. Дело в том, что если за центральный меридиан - линию, соединяющую северный и южный полюс через центр карты (longitude of origin) - принять нулевой меридиан, то карта будет разрезана по 180-му. Но при этом треть Чукотки окажется на левом краю карты, а две трети - на правом. Чтобы сделать карту красивее, разрез должен проходить где-то в районе 169-го западного меридиана восточнее острова Ратманова, для чего за центральный должен быть принят 11-й. Вот иллюстрация того, что получается:

А вот измененное для этого случая описание в ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",
SPHEROID["WGS84",6378137,298.257223563]
],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]
],
PROJECTION["Robinson"],
PARAMETER["central_meridian",11],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["Meter",1]
]

В формате определения системы координат для PROJ.4 долгота центра проекции задается параметром +lon_0=.

11-й меридиан - «магическое» число: практически все мировые проекции, имеющие равномерный масштаб вдоль экватора, могут быть разрезаны по Берингову проливу, если за центральный принять именно его, а не нулевой.

Замечу, что задумываясь о выборе проекции, стоит принимать во внимание все существующие реальные требования к визуализации. Например, если данные касаются климата, то может иметь смысл либо нанести на карту линии широты, либо использовать проекцию, где они горизонтальны, а не загибаются к краям карты (то есть, отказаться от Тройной Винкеля в пользу, например, Робинсона). В данном случае, это позволит легче и точнее оценить относительную близость разных мест к полюсам и экватору. Еще один весомый плюс проекции Робинсона - то, что она поддерживается множеством софта, в том числе открытого, тогда как про некоторые другие этого сказать нельзя.

Иногда, когда требуется максимально сохранить какое-то свойство, например - соотношение площадей объектов (стран) - эстетическая сторона страдает. Но поскольку это все же может для чего-то понадобиться, я приведу один пример такой проекции - «проекцию Моллвейде» , Mollweide projection WKID:54009 PROJ.4:moll .

Как видно, она довольно сильно напоминает проекцию Робинсона, но с той разницей, что полюса все же стянуты в точки, от чего форма приполярных областей выглядит сильно искаженной. Но пропорции площадей стран, как и требовалось, сохраняются куда лучше.

Самым молодым конкурентом этих проекций является проекция Natural Earth PROJ.4:natearth - она представляет из себя гибрид проекций Каврайского и Робинсона, а ее параметры были подобраны группой американских, швейцарских и словенских специалистов в 2007 году, тогда как возраст большинства картографических проекций - не менее полувека.

Для перепроецирования данных в нее существует некоторое количество инструментов, которые были написаны специально для этого, но ее поддержка еще далека от повсеместной.

Немного экзотики и специальных случаев

Конечно, все многообразие проекций на этом не заканчивается. Их изобретено немало. Некоторые просто выглядят странно (скажем, проекция Бонне изображает Землю в виде фигуры, напоминающей разрезанное яблоко или стилизованное сердце), некоторые - предназначены для особых ситуаций. Например, готов поспорить, что очень многие видели на картинках карту мира, которая похожа на корку мандарина, которую сняли и расплющили. Это, наверняка, была Interrupted Goode Homolosine projection WKID:54052 .

Вид ее вполне достоин названия. Ее назначение - отображать размер объектов (и в некоторой степени - форму) близко к естественным пропорциям. Ее главная проблема, кроме названия и странного вида, состоит в том, что путем подбора центрального меридиана невозможно добиться того, чтобы ни один крупный кусок суши не был разрезан. Обязательно пострадает что-то из списка: Гренландия, Исландия, Чукотка, Аляска. Лично на мой взгляд, проще привести отдельно изображения стран, чем использовать такую карту, если вы не хотите стилизовать свою работу под середину XX века.

Существуют проекции, которые по своей природе никак не отнести к общемировым, но мне бы хотелось рассмотреть их здесь, потому что они способны показать земной шар, то есть как-бы вид планеты из космоса. Одна из них - Vertical Near-Side Perspective projection WKID:54049 . Ее особое свойство - показывать земную поверхность в такой перспективе, как она выглядит с определенной высоты. Высота над эллипсоидом (идеализированной фигурой, моделирующей Землю) задается для этой проекции в явном виде.

На иллюстрации эта проекция имеет широту и долготу центра, равные широте и долготе Москвы, а высоту - 5000000 метров. Чем больше это расстояние, тем сильнее изображение Земли становится похоже на ее изображение в проекции, которую мы рассмотрим последней.

Проекция, которая показывает вид на Землю в параллельной перспективе, то есть как-бы с бесконечного расстояния, называется Orthographic projection WKID:43041 PROJ.4:ortho . В каком-то смысле, она знакома всем, кто когда-либо пользовался Google Earth. Я говорю, что в каком-то смысле, потому что «направление взгляда» в этой проекции всегда перпендикулярно поверхности Земли, тогда как в Google Earth его можно наклонять как угодно.

Для нее, как и для предыдущей проекции, можно задать центральные широту и долготу, чтобы ориентировать Землю желаемым образом. Например, можно показать полушарие с центром в какой-то точке, о которой идет речь - скажем, иллюстрируя транспортные потоки континентального масштаба, исходящие от одного предприятия. Сделав две карты с противоположными значениями координат, можно получить карту всего мира (правда, на краях искажения будут очень велики). Генерация последовательности карт с плавным изменением центральной точки даст кадры для анимации вращающейся планеты без всякой трехмерной графики.

Если статья окажется интересной, постараюсь написать продолжение о проекциях, используемых для отображения отдельных стран или регионов, ориентированную, как и эта статья, на базовые свойства этих проекций для задачи визуализации данных, инфографики и тому подобного.

Географическими картами человек пользуется с глубокой древности. Первые попытки изобразить были предприняты еще в Древней Греции такими учеными, как Эратосфен и Гиппарх. Естественно, с тех пор картография как наука далеко продвинулась вперед. Современные карты создаются с помощью съемки со спутников и с использованием компьютерных технологий, что, конечно же, способствует увеличению их точности. И все же, на каждой географической карте присутствуют некоторые искажения относительно натуральных форм, углов или расстояний на земной поверхности. Характер этих искажений, а, следовательно, и точность карты, зависит от видов картографических проекций, использованных при создании конкретной карты.

Понятие картографическая проекция

Разберем подробнее, что такое картографическая проекция и какие их виды применяются в современной картографии.

Картографическая проекция - это изображение на плоскости. Более глубокое с научной точки зрения определение звучит так: картографическая проекция - это способ отображения точек поверхности Земли на некоторой плоскости, при котором между координатами соответствующих точек отображаемой и отображенной поверхностей устанавливается некоторая аналитическая зависимость.

Как строится картографическая проекция?

Построение любых видов картографических проекций происходит в два этапа.

  1. Во-первых, геометрически неправильная поверхность Земли отображается на некоторую математически правильную поверхность, которую называют поверхностью относимости. Для наиболее точного приближения в этом качестве чаще всего используют геоид - геометрическое тело, ограниченное водной поверхностью всех морей и океанов, связанных между собой (уровень моря) и имеющих единую водную массу. В каждой точке поверхности геоида сила тяжести приложена нормально. Однако геоид, как и физическую поверхность планеты, также нельзя выразить единым математическим законом. Поэтому в качестве поверхности относимости вместо геоида принимают эллипсоид вращения, придавая ему максимальное подобие геоиду с помощью степени сжатия и ориентации в теле Земли. Называют это тело земным эллипсоидом или референц-эллипсоидом, причем в разных странах для них принимают различные параметры.
  2. Во-вторых, принятая поверхность относимости (референц-эллипсоид) переносится на плоскость с использованием той или иной аналитической зависимости. В итоге получаем плоскую картографическую проекцию

Искажение проекций

А вы не задумывались, почему на разных картах очертания материков немного различаются? На одних картографических проекциях некоторые части света выглядят больше или меньше относительно каких-либо ориентиров, чем на других. Все дело в искажении, с которым проекции Земли переносятся на плоскую поверхность.

Но почему картографические проекции отображают в искаженном виде? Ответ довольно прост. Сферическую поверхность не представляется возможным развернуть на плоскости, избежав складок или разрывов. Поэтому и изображение с нее нельзя отобразить, избежав искажения.

Методы получения проекций

Изучая картографические проекции, их виды и свойства необходимо упомянуть о методах их построения. Итак, картографические проекции получают, используя два основных метода:

  • геометрический;
  • аналитический.

В основе геометрического метода лежат закономерности линейной перспективы. Наша планета условно принимается сферой некоторого радиуса и проецируется на цилиндрическую или коническую поверхность, которая может либо касаться, либо рассекать ее.

Проекции, полученные подобным способом, называются перспективными. В зависимости от положения точки наблюдения относительно поверхности Земли перспективные проекции разделяют на виды:

  • гномонические или центральные (когда точка зрения совмещена с центром земной сферы);
  • стереографические (в этом случае точка наблюдения расположена на поверхности относимости);
  • ортографическая (когда поверхность наблюдается из любой точки, находящейся вне сферы Земли; проекция строится переносом точек сферы с помощью параллельных линий, перпендикулярных к отображающей поверхности).

Аналитический метод построения картографических проекций базируется на математических выражениях, связывающих точки на сфере относимости и плоскости отображения. Такой метод является более универсальным и гибким, позволяя создавать произвольные проекции по заранее заданному характеру искажения.

Виды картографических проекций в географии

Для создания географических карт используют множество видов проекций Земли. Их классифицируют по различным признакам. В России применяется классификация Каврайского, которая использует четыре критерия, определяющих основные виды картографических проекций. В качестве характерных классифицирующих параметров используют:

  • характер искажения;
  • форму отображения координатных линий нормальной сетки;
  • расположение точки полюса в нормальной координатной системе;
  • способ применения.

Итак, какие существуют виды картографических проекций согласно данной классификации?

Классификация проекций

По характеру искажения

Как упоминалось выше, искажение, в сущности, является неотъемлемым свойством любой проекции Земли. Искажена может быть любая характеристика поверхности: длина, площадь или угол. По типу искажений выделяют:

  • Равноугольные или конформные проекции , в которых азимуты и углы переносятся без искажений. Координатная сетка в конформных проекциях является ортогональной. Карты, полученные таким путем, рекомендуется использовать для определения расстояний в любом направлении.
  • Равновеликие или эквивалентные проекции , где сохраняется масштаб площадей, который принимается равным единице, т. е. площади отображаются без искажения. Такие карты применяют для сравнения площадей.
  • Равнопромежуточные или эквидистантные проекции , при построении которых сохраняется масштаб по одному из основных направлений, который принимается единичным.
  • Произвольные проекции , на которых могут присутствовать все разновидности искажений.

По форме отображения координатных линий нормальной сетки

Такая классификация является максимально наглядной и, следовательно, наиболее легкой для восприятия. Отметим, однако, что данный критерий относится только к проекциям, ориентированным нормально к точке наблюдения. Итак, исходя из данного характерного признака, различают следующие виды картографических проекций:

Круговые , где параллели и меридианы представляют окружностями, а экватор и средний меридиан сетки в виде прямых линий. Подобные проекции применяют для изображения поверхности Земли в целом. Примерами круговых проекций могут служить равноугольная проекция Лагранжа, а также произвольная проекция Гринтена.

Азимутальные . В данном случае параллели представляют в виде концентрических окружностей, а меридианы в виде пучка расходящихся радиально из центра параллелей прямых. Подобная разновидность проекций используется в прямом положении для отображения полюсов Земли с прилегающими территориями, а в поперечном в качестве знакомой каждому с уроков географии карты западного и восточного полушарий.

Цилиндрические , где меридианы и параллели представлены прямыми пересекающимися нормально линиями. С минимальным искажением здесь отображаются территории, прилегающие к экватору или же растянутые вдоль некоторой стандартной широты.

Конические , представляющие собой развертку боковой поверхности конуса, где линии параллелей являются дугами окружностей с центром в вершине конуса, а меридианов - направляющими, расходящимися из вершины конуса. Такие проекции наиболее точно изображают территории, лежащие в средних широтах.

Псевдоконические проекции похожи на конические, только меридианы в данном случае изображаются кривыми линиями, симметричными относительно прямолинейного осевого меридиана сетки.

Псевдоцилиндрические проекции напоминают цилиндрические, только, также, как и в псевдоконических, меридианы изображаются кривыми линиями, симметричными осевому прямолинейному меридиану. Используются для изображения Земли целиком (например, эллиптическая проекция Мольвейде, равновеликая синусоидальная Сансона и т. д.).

Поликонические , где параллели изображаются в виде окружностей, центры которых расположены на среднем меридиане сетки или его продолжении, меридианы в виде кривых, расположенных симметрично прямолинейному

По положению точки полюса в нормальной системе координат

  • Полярные или нормальные - полюс системы координат совпадает с географическим полюсом.
  • Поперечные или трансверсионные - полюс нормальной системы совмещается с экватором.
  • Косые или наклонные - полюс нормальной сетки координат может находиться в любой точке между экватором и географическим полюсом.

По способу применения

По способу использования выделяют следующие виды картографических проекций:

  • Сплошные - проецирование всей территории на плоскость производится по единому закону.
  • Многополосные - картографируемая местность условно разбивается на несколько широтных зон, которые проецируют на плоскость отображения по единому закону, но с изменением параметров для каждой зоны. Примером подобной проекции может служить трапециевидная проекция Мюфлинга, которая применялась в СССР для крупномасштабных карт до 1928 г.
  • Многогранные - территорию условно разбивают на некоторое количество зон по долготе, проецирование на плоскость производится по единому закону, но с разными параметрами для каждой из зон (например, проекция Гаусса-Крюгера).
  • Составные , когда некоторая часть территории отображается на плоскость с использованием одной закономерности, а остальная территория с другой.

Достоинством как многополосных, так и многогранных проекций является высокая точность отображения в пределах каждой зоны. Однако весомым недостатком при этом является невозможность получения сплошного изображения.

Разумеется, каждую картографическую проекцию можно классифицировать с использованием каждого из вышеперечисленных критериев. Так, знаменитая проекция Земли Меркатора является конформной (равноугольной) и поперечной (трансверсионной); проекция Гаусса-Крюгера - конформной поперечной цилиндрической и т. д.

Для выбора наиболее выгодного пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное изображение земной поверхности на плоскости, выполненное по определенному способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов — разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности — картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей поверхности шара или его части или эллипсоида вращения с малым сжатием называются картографической проекцией, а принятая при данной картографической проекции система изображения сети меридианов и параллелей — картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на карте в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.


Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S. В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели — дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли и последующей развертки по образующей на плоскость.

В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.

Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q — касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из центральной точки проекции P N под углами, равными соответствующим углам в натуре, а параллели — концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.

Основными проекциями, используемыми для составления морских карт, являются:

  • равноугольная цилиндрическая проекция Меркатора;
  • равноугольная поперечная цилиндрическая проекция Гаусса;
  • равноугольная азимутальная, (стереографическая) проекция;
  • центральная (гномоническая) проекция;

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, математические способы отображения всей поверхности земного эллипсоида или его части на плоскости карты. Картографические проекции устанавливают соответствие между геодезическими координатами точек (широтой В и долготой L) и их прямоугольными координатами (Х и У) на карте:

Х = f 1 (В, L); Y = f 2 (В, L).

Конкретные реализации функций f 1 , и f 2 часто сложны, их число бесконечно, и, следовательно, разнообразие картографических проекций неограниченно. Исходная аксиома картографических проекций состоит в том, что сферическую поверхность нельзя развернуть на плоскость без деформаций - сжатий и растяжений, различных по величине и направлению. Математическая картография изучает все виды искажений и разрабатывает методы построения проекций, в которых искажения имели бы или наименьшие (в каком-либо смысле) значения, или заранее заданное распределение. Разные картографические проекции могут иметь следующие виды искажений: искажения длин - масштаб длин и расстояний непостоянен в разных точках карты и по разным направлениям; искажения площадей - масштаб площадей в разных точках карты различен, что нарушает размеры объектов; искажения углов - углы между направлениями на карте искажены относительно углов на местности; искажения форм - фигуры на карте деформированы и не подобны фигурам на местности, что является следствием искажения углов.

В любой картографической проекции различают главный масштаб длин и площадей - отношение, показывающее степень уменьшения размеров эллипсоида (шара) относительно его изображения на карте, и частные масштабы - отношение бесконечно малого отрезка (или площади), изображённого на карте, к соответствующей бесконечно малой величине на эллипсоиде (шаре). Картографические анимации имеют ещё и временной масштаб, т. е. отношение времени демонстрации карты к реальному времени изображаемого процесса.

По характеру искажений, возникающих при переходе от сферической поверхности к плоскости, картографические проекции подразделяют на равновеликие, которые сохраняют размеры площадей, равноугольные, оставляющие без искажений углы и формы контуров (ранее их называли конформными), и произвольные, где площади и углы искажены в разных соотношениях. Частный случай произвольных картографических проекций - равнопромежуточные проекции, в которых масштаб постоянен по одному из главных направлений (по меридиану или параллели). Смотри карты Картографических проекций.

Мерой деформаций в картографической проекции служит эллипс искажений (или индикатриса Тиссо). Любая бесконечно малая окружность на земном шаре (эллипсоиде) предстаёт на карте бесконечно малым эллипсом, размеры и форма которого отражают искажения длин, площадей и углов. Длина и ориентировка большой оси эллипса искажений соответствуют направлению наибольшего растяжения (а) в данной точке, а малая ось - наибольшего сжатия (b), отрезки вдоль меридиана и параллели характеризуют частные масштабы вдоль них (m и n).

Искажения на картах можно также показывать с помощью особых изолиний - изокол, т. е. линий равных искажений длин, площадей, углов или форм.

В зависимости от положения оси, используемой при проектировании системы сферических координат, различают картографические проекции нормальные (ось сферическая координат совпадает с осью вращения Земли), поперечные (ось сферических координат лежит в плоскости экватора) и косые (ось сферических координат расположена под углом к плоскости экватора).

По виду нормальной сетки меридианов и параллелей выделяют цилиндрические картографические проекции, в которых меридианы и параллели нормальной сетки являются прямыми, взаимно перпендикулярными линиями; иначе говоря, земной шар (эллипсоид) как бы проектируют на вспомогательную поверхность касательного или секущего цилиндра, который потом разворачивают в плоскость. В конических картографических проекциях поверхность земного шара также проектируют на вспомогательную поверхность касательного или секущего конуса, поэтому в нормальной конической проекции меридианы - это прямые, исходящие из точки полюса, а параллели - дуги концентрических окружностей. В нормальных (полярных) азимутальных картографических проекциях поверхность земного шара переносят на вспомогательную плоскость, перпендикулярную оси вращения Земли, параллели в ней - концентрические окружности, а меридианы - диаметры этих окружностей. В этой проекции всегда картографируют полярные области. Если плоскость проекции перпендикулярна к плоскости экватора, то получается поперечная (экваториальная) азимутальная проекция, которую всегда используют для карт полушарий. Вспомогательные касательные поверхности дают одну общую линию или точку для эллипсоида (шара) и плоскости карты, где искажения отсутствуют. В случае секущей поверхности появляются две общие линии. В псевдоцилиндрических картографических проекциях параллели - прямые (как и в цилиндрических проекциях), средний меридиан - перпендикулярная им прямая, а остальные меридианы - кривые, увеличивающие кривизну по мере удаления от среднего меридиана. В псевдоконических картографических проекциях все параллели предстают дугами концентрических окружностей (как в нормальных конических), средний меридиан - прямая линия, а остальные меридианы - кривые, причём кривизна их возрастает с удалением от среднего меридиана. В нормальных поликонических картографических проекциях параллели представлены дугами эксцентрических окружностей, а меридианы - кривыми, симметричными относительно прямого среднего меридиана. Полярные псевдоазимутальные картографические проекции - это видоизменённые азимутальные проекции, в которых параллели изображены в виде концентрических окружностей, а меридианы - в виде кривых линий, симметричных относительно одного или двух прямых меридианов.

Компьютерные технологии позволяют получать эти и множество произвольных картографических проекций любого вида. Их свойства задают в соответствии с особенностями картографируемой территории и её положением на земном шаре, назначением и способом использования карты, предпочтительным распределением искажений и т.п. Многогранные картографические проекции получают, проектируя земной шар на поверхность многогранника. Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные картографические проекции, причём полосы могут «нарезаться» по меридианам и по параллелям. Такие проекции удобны тем, что искажения в пределах каждой грани или полосы невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические карты создают исключительно в многогранной проекции, и рамка каждого листа представляет собой сферическую трапецию, образованную линиями меридианов и параллелей. Однако блок листов карт нельзя совместить по общим рамкам без разрывов.

В некоторых случаях для уменьшения искажений используют разорванные картографические проекции, где непрерывность изображения нарушается на океанах, если содержание карты приурочено к материкам (например, карта населения, сельскохозяйственная карта), или на материках, если карта характеризует только океаны (например, геологическое строение дна Мирового океана).

Многочисленность картографических проекций объясняется разнообразием задач, для которых служат карты (например, для морских и аэронавигационных карт нужны равноугольные, а для кадастровых измерений - равновеликие картографические проекции), географическим положением территории (полярные области изображают в нормальных картографических проекциях, а полушария - в поперечных азимутальных картографических проекциях), назначением карт (разные проекции нужны для школьных и научно-справочных карт). Созданы специальные электронные атласы картографических проекций, с помощью которых можно отыскать подходящую картографическую проекцию, оценить её свойства, а при необходимости провести те или иные модификации или преобразования. Выбор вариантов очень велик, но всё же существуют некоторые предпочтительные и наиболее традиционные картографические проекции.

Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических картографических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические картографические проекции дают с разрывами на океанах. Карты полушарий всегда строят в азимутальных картографических проекциях. Для Западного и Восточного полушарий используют поперечные (экваториальные), для Северного и Южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанических полушарий) - косые азимутальные картографические проекции. Для карт материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего применяют равновеликие косые азимутальные картографические проекции, для Африки - поперечные, а для Антарктиды - нормальные азимутальные картографические проекции. Карты России в целом составляют чаще всего в нормальных конических равнопромежуточных картографических проекциях с секущим конусом, но в некоторых случаях - в поликонических, произвольных и в других картографических проекциях. Однако сетка конических картографических проекций не всегда удобна. Например, на картах России для начальной школы требуется картографическая проекция, в которой меридианы сходятся в точке полюса, а самая северной точка суши (мыс Челюскин) располагается ближе всего к северной рамке. Карты отдельных стран, административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных картографических проекциях, но многое зависит от конфигурации самой территории и её положения на земном шаре. Для небольших по площади районов задача выбора картографических проекций теряет актуальность, можно использовать разные равноугольные проекции, поскольку искажения площадей на малых территориях малоощутимы. Топографические карты России создают в поперечно-цилиндрической проекции Гаусса - Крюгера, а карты США и многих других западных стран - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UTM). Обе проекции близки по своим свойствам, и та и другая по существу являются многополосными. Морские и аэронавигационные карты выполняют исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения Мирового океана - равновеликие проекции с разрывами на материках.

В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять математическим факторам выбора картографических проекций, и, наоборот, для малых территорий и крупных масштабов более существенными становятся географические факторы.

Краткие исторические сведения. Первые карты с использованием сетки меридианов и параллелей создали греческие учёные Эратосфен, Гиппарх. Клавдий Птолемей в «Руководстве по географии» описал принципы создания некоторых конических проекций. Великие географические открытия послужили значительному развитию картографии и способствовали созданию новых картографических проекций. Большой вклад в теорию проекций внесли фламандские картографы: Г. Меркатор, предложивший цилиндрическую (Меркатора) проекцию для навигационных карт, А. Ортелий, Я. Янсон (1588-1664) и др. Теория проекций всегда рассматривалась как важнейшая научная проблема картографии. Свой вклад в разработку картографических проекций внесли известные математики И. Ламберт, Л. Эйлер, Ж. Лагранж, К. Гаусс. В середине 19 века французский исследователь А. Тиссо создал общую теорию искажений картографических проекций. В России теорией картографических проекций занимались А. П. Болотов (1803-1853), Ф. И. Шуберт, П. Л. Чебышев, Д. А. Граве, Д. И. Менделеев, В. В. Витковский (1856-1924), Ф. Н. Красовский, В. В. Каврайский, Г. А. Гинзбург (1905-1975), Н. А. Урмаев и др.

Лит.: Витковский В. В. Картография. Теория картографических проекций. СПб., 1907; Каврайский В. В. Математическая картография. М.; Л., 1934; Урмаев Н. А. Методы изыскания новых картографических проекций. М., 1947; Гинзбург Г. А. Картографические проекции. М., 1951; Соловьев М. Д. Математическая картография. М., 1969; Сорокин А. И. Морская картография. М., 1985; Вахрамеева Л. А., Бугаевский Л. М., Казакова З. Л. Математическая картография. М., 1986; Серапинас Б. Б. Математическая картография. М., 2005.

План лекции
1. Классификация проекций по виду нормальной картографической сетки.
2. Классификация проекций в зависимости от ориентирования вспомогательной картографической поверхности.
3. Выбор проекций.
4. Распознавание проекций.

6.1. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ВИДУ НОРМАЛЬНОЙ КАРТОГРАФИЧЕСКОЙ СЕТКИ

В картографической практике распространена классификация проекций по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра; конические, когда вспомогательной плоскостью является боковая поверхность конуса; азимутальные, когда вспомогательная поверхность - плоскость (картинная плоскость).
Поверхности, на которые проектируют земной шар, могут быть к нему касательными или секущими его. Они могут быть и по-разному ориентированы.
Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а картинная плоскость, на которую проектировалось изображение, размещалась касательно в точке полюса, называются нормальными.
Геометрическое построение названных проекций отличается большой наглядностью.

6.1.1. Цилиндрические проекции

Для простоты рассуждения вместо эллипсоида воспользуемся шаром. Заключим шар в цилиндр, касательный по экватору (рис. 6.1, а).

Рис. 6.1. Построение картографической сетки в равновеликой цилиндрической проекции

Продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа 1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями аАа 1 , бБб 1 , вВв 1 ..., перпендикулярными экватору АБВ.
Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам.
Полученная цилиндрическая проекция (рис. 6.1, б) будет равновеликой , так как боковая поверхность шарового пояса АГДЕ, равная 2πRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по мере удаления от экватора.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция будет равнопромежуточной по меридианам .
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах.
Нередко вместо касательного цилиндра используют цилиндр, секущий сферу по двум параллелям (рис. 6.2), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.


Рис. 6.2. Цилиндр, секущий шар по двум параллелям

6.1.2. Конические проекции

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 6.3, а).


Рис. 6.3. Построение картографической сетки в равнопромежуточной конической проекции

Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 6.3, б) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ,..., исходящими из точки Т. Обратите внимание на то, что углы между ними (схождение меридианов) будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб.
Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из определенных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ = Ае) - приводит к конической равнопромежуточной проекции.

6.1.3. Азимутальные проекции

Для построения азимутальной проекции воспользуемся плоскостью, касательной к шару в точке полюса П (рис. 6.4). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пе, Пв,... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюса до соответствующей параллели ПА = Па. Такая проекция будет равнопромежуточной по меридианам и сохраняет вдоль них главный масштаб.


Рис. 6.4. Построение картографической сетки в азимутальной проекции

Частным случаем азимутальных проекций являются перспективные проекции, построенные по законам геометрической перспективы. В этих проекциях каждая точка поверхности глобуса переносится на картинную плоскость по лучам, выходящим из одной точки С , называемой точкой зрения. В зависимости от положения точки зрения относительно центра глобуса проекции подразделяются на:

  • центральные - точка зрения совпадает с центром глобуса;
  • стереографические - точка зрения располагается на поверхности глобуса в точке, диаметрально противоположной точке касания картинной плоскости к поверхности глобуса;
  • внешние - точка зрения вынесена за пределы глобуса;
  • ортографические - точка зрения вынесена в бесконечность, т. е. проектирование осуществляется параллельными лучами.


Рис. 6.5. Виды перспективных проекций: а - центральная;
б - стереографическая; в - внешняя; г - ортографическая.

6.1.4. Условные проекции

Условные проекции - проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутальные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
У псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу линии (что роднит их с цилиндрическими проекциями), а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 6.6)


Рис. 6.6. Вид картографической сетки в псевдоцилиндрической проекции.

У псевдоконических проекций параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 6.7);


Рис. 6.7. Картографическая сетка в одной из псевдоконических проекций

Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 6.8.

Рис. 6.8. Принцип построения поликонической проекции:
а - положение конусов; б - полосы; в - развертка

Буквами S на рисунке обозначены вершины конусов. На каждый конус проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса.
Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего — прямого), а параллели — дуги эксцентрических окружностей.
В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.
После развертки конусов получают изображение этих участков в виде полос на плоскости (рис. 6.8, б); полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений (рис. 6.8, в).


Рис. 6.9. Картографическая сетка в одной из поликонических

Многогранные проекции - проекции, получаемые путем проектирования на поверхность многогранника (рис. 6.10), касательного или секущего шар (эллипсоид). Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические создают исключительно в многогранной проекции, и рамка каждого листа представляет собой трапецию, составленную линиями меридианов и параллелей. За это приходится "расплачиваться" - блок листов карт нельзя совместить по общим рамкам без разрывов.


Рис. 6.10. Схема многогранной проекции и расположение листов карт

Необходимо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, а автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости - и карту изокол.
Существуют специальные атласы проекций, позволяющие подобрать нужную проекцию для любой территории. В последнее время созданы электронные атласы проекций, с помощью которых легко отыскать подходящую сетку, сразу оценить ее свойства, а при необходимости провести в интерактивном режиме те или иные модификации или преобразования.

6.2. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ В ЗАВИСИМОСТИ ОТ ОРИЕНТИРОВАНИЯ ВСПОМОГАТЕЛЬНОЙ КАРТОГРАФИЧЕСКОЙ ПОВЕРХНОСТИ

Нормальные проекции - плоскость проектирования касается земного шара в точке полюса или ось цилиндра (конуса) совпадает с осью вращения Земли (рис. 6.11).


Рис. 6.11. Нормальные (прямые) проекции

Поперечные проекции - плоскость проектирования касается экватора в какой-либо точке или ось цилиндра (конуса) совпадает с плоскостью экватора (рис. 6.12).




Рис. 6.12. Поперечные проекции

Косые проекции - плоскость проектирования касается земного шара в любой заданной точке (рис. 6.13).


Рис. 6.13. Косые проекции

Из косых и поперечных проекций наиболее часто используют косые и поперечные цилиндрические, азимутальные (перспективные) и псевдоазимутальные проекции. Поперечные азимутальные применяют для карт полушарий, косые - для территорий, имеющих округлую форму. Карты материков часто составляют в поперечных и косых азимутальных проекциях. Поперечно-цилиндрическая проекция Гаусса - Крюгера применяется для государственных топографических карт.

6.3. ВЫБОР ПРОЕКЦИЙ

На выбор проекций влияет много факторов, которые можно сгруппировать следующим образом:

  • географические особенности картографируемой территории, ее положение на Земном шаре, размеры и конфигурация;
  • назначение, масштаб и тематика карты, предполагаемый круг потребителей;
  • условия и способы использования карты, задачи, которые будут решаться по карте, требования к точности результатов измерений;
  • особенности самой проекции - величины искажений длин, площадей, углов и их распределение по территории, форма меридианов и параллелей, их симметричность, изображение полюсов, кривизна линий кратчайшего расстояния.

Первые три группы факторов задаются изначально, четвертая - зависит от них. Если составляется карта, предназначенная для навигации, обязательно должна быть использована равноугольная цилиндрическая проекция Меркатора. Если картографируется Антарктида, то почти наверняка будет принята нормальная (полярная) азимутальная проекция и т.д.
Значимость названных факторов может быть различной: в одном случае на первое место ставят наглядность (например, для настенной школьной карты), в другом - особенности использования карты (навигация), в третьем - положение территории на земном шаре (полярная область). Возможны любые комбинации, а следовательно - и разные варианты проекций. Тем более что выбор очень велик. Но все же можно указать некоторые предпочтительные и наиболее традиционные проекции.
Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические проекции иногда дают с разрывами на океанах.
Карты полушарий всегда строят в азимутальных проекциях. Для западного и восточного полушарий естественно брать поперечные (экваториальные), для северного и южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанического полушарий) — косые азимутальные проекции.
Карты материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего строят в равновеликих косых азимутальных проекциях, для Африки берут поперечные, а для Антарктиды - нормальные азимутальные.
Карты отдельных стран , административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных проекциях, но многое зависит от конфигурации территории и ее положения на земном шаре. Для небольших по площади районов задача выбора проекции теряет актуальность, можно использовать разные равноугольные проекции, имея в виду, что искажения площадей на малых территориях почти неощутимы.
Топографические карты Украины создают в поперечно-цилиндрической проекции Гаусса, а США и многие другие западные страны - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UТМ). Обе проекции близки по своим свойствам; по существу та и другая являются многополостными.
Морские и аэронавигационные карты всегда даются исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения всего Мирового океана - равновеликие проекции с разрывами на материках.
В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять «математическим» факторам выбора проекции, и наоборот - для малых территорий и крупных масштабов более существенными становятся «географические» факторы.

6.4. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, - значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений - словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

Вопросы для самоконтроля:

  1. Как классифицируют проекции по виду вспомогательной поверхности?
  2. Как классифицируют проекции в зависимости от положения оси вспомогательной поверхности относительно оси вращения глобуса?
  3. Какой принцип построения поликонической проекции?
  4. Как получают азимутальные проекции?
  5. Как получить косую проекцию на касательном цилиндре?
  6. Как получить азимутальную экваториальную проекцию?
  7. Какие виды перспективных проекций вы знаете? Дайте им краткую характеристику.
  8. Какие проекции относят к условным?
  9. Какие факторы оказывают влияние на выбор картографической проекции?
  10. В каких проекциях обычно составляют карты мира,морские и аэронавигационные карты, топографические карты, карты отдельных стран, карты материков, карты полушарий?
  11. По каким признакам распознают проекции?