Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 - 1,5 Гкал/ч.

Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.

Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 - котел водогрейный; 2 - насос сетевой; 3 - насос рециркуляционный; 4 - насос сырой воды; 5 - насос подпиточной воды; 6 - бак подпиточной воды; 7 - подогреватель сырой воды; 8 - подогреватель химии чески очищенной воды; 9 - охладитель подпиточной воды; 10 - деаэратор; 11 - охладитель выпара.

Вода из обратной линии тепловых сетей с небольшим напором (20 - 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.

Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.

Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.

Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:

при работе на природном газе - не ниже 60°С; при работе на малосернистом мазуте - не ниже 70°С; при работе на высокосернистом мазуте - не ниже 110°С.

В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.

Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.

Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха - от -13°С до - 40°С разработаны Теплоэлектропроектом.

Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:

где t вн - температура воздуха внутри отапливаемых помещений,°С; t H - расчетная температура наружного воздуха для отопления,°С; t′ H - изменяющаяся во времени температура наружного воздуха,°С;π′ i - температура воды в подающем трубопроводе при t н °С; π 2 - температура воды в обратном трубопроводе при t н °С;tн - температура воды в подающем трубопроводе при t′ н,°С; ∆т - расчетный перепад температур, ∆t = π 1 - π 2 ,°С; θ =π з -π 2 - расчетный перепад температур в местной системе,°С; π 3 = π 1 + aπ 2 / 1+ a - расчетная температура воды, поступающей в отопительный прибор, °С; π′ 2 - температура воды, идущей в обратный трубопровод от прибора при t" H ,°С; а - коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.

Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха - 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.

Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.

Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации в размере до 3 % установленной теплопроизводительности всех котлов.

Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.

Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м 3 и для промышленных предприятий - 15 м 3 .

С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 - 50 м 3 , для промышленных предприятий - 25 - 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.

Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 - котел водогрейный; 2 - насос рециркуляционный; 3 - насос сетевой; 4 - насос сетевой летний; 5 - насос сырой воды; 6 - насос конденсатный; 7 - бак конденсатный; 8 - подогреватель сырой воды; 9 - подогреватель химически очищенной воды; 10 - деаэратор; 11 - охладитель выпара.

Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС - 20 для закрытой системы теплоснабжения показана на рис. 5.8.

В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой - деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами - теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).

Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.

При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.

Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 - котел водогрейный, 2 - рециркуляционный, 3 - насос сетевой, 4 - насос сетевой летний.

Рис. 5-10. Агрегатная компоновка котлов КВ - ГМ - 100, сетевых и рециркуляционных насосов. 1 - насос водогрейный; 2 - насос сетевой; 3 - насос рециркуляционный.

Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.

Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ - 30М, КВ - ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.

ВОЗМОЖНОСТИ ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ В ВОДОГРЕЙНЫХ КОТЕЛЬНЫХ

К.т.н. Л. А. Репин, директор, Д.Н. Тарасов, инженер, А.В. Макеева, инженер, ЗАО «Южно-русская энергетическая компания», г. Краснодар

Опыт последних лет эксплуатации российских систем теплоснабжения в зимних условиях показывает, что нередки случаи нарушения электроснабжения источников тепла. При этом прекращение подачи электроэнергии в котельные может привести к серьезным последствиям как в самой котельной (остановка вентиляторов, дымососов, выход из строя автоматики и защиты), так и вне ее (замерзание теплотрасс, систем отопления зданий и т.п.).

Одним из известных и в то же время эффективных решений этой проблемы, для относительно крупных паровых котельных, является использование турбогенераторных установок, работающих на избыточном давлении пара, т.е. организация когенерации на базе внешнего теплового потребления . Это позволяет не только увеличить эффективность использования топлива и улучшить экономические показатели источника тепла, но и, обеспечив его электроснабжение от собственного электрогенератора, повысить надежность работы системы теплоснабжения.

Применительно к коммунальной теплоэнергетике такое решение представляется нереальным, поскольку подавляющее большинство котельных являются водогрейными. В этом случае для повышения надежности практикуется установка на тепловом источнике дизель-генераторов, которые в случае аварии в системе электроснабжения могут обеспечить собственные нужды котельной. Однако это требует существенных

затрат, а коэффициент использования установленного оборудования приближается к нулю.

В данной статье предлагается другое решение этой проблемы. Суть его состоит в организации собственного производства электрической энергии в водогрейной котельной на базе осуществления цикла Ренкина, используя в качестве рабочего тела низкокипящее вещество, которое в дальнейшем будем называть «агент» .

Схемы электростанций с использованием низкокипящих рабочих тел достаточно известны и применяются, в основном, на геотермальных месторождениях с целью утилизации теплоты сбросных вод . Однако основным их недостатком является низкий термический КПД цикла, что связано с необходимостью отвода теплоты конденсации агента в окружающую среду. В водогрейных котельных и в паровых котельных малой мощности (где другие варианты когенерации нецелесообразны) теплоту конденсации можно использовать для предварительного подогрева сырой воды, поступающей на ХВО или идущей в подогреватели ГВС в случае, если они установлены на источнике теплоснабжения. Принципиальная тепловая схема водогрейной котельной с интегрированной установкой по производству электроэнергии представлена на рис. 1.

Часть теплоносителя на выходе из водогрейного котла I отбирается и, последовательно проходя через испаритель II и подогреватель агента III, обеспечивает получение его в виде пара с параметрами, достаточными для использования в качестве рабочего тела в тепловом двигателе IV, соединенным с электрогенератором.

После завершения процесса расширения отработанный пар поступает в теплообменник-конденсатор V, где теплота конденсации утилизируется потоком холодной воды, идущей в установку ХВО или, как показано на рисунке, через дополнительный подогреватель VI и бак-аккумулятор VII в систему подачи воды на нужды ГВС.

Для практической реализации предлагаемой схемы необходимо рассмотреть несколько моментов.

1. Подобрать низкокипящее вещество (агент), которое по своим термодинамическим характеристикам вписывалось бы в режим работы и параметры котельной.

2. Определить оптимальные параметры режима работы теплосиловой установки и тепло-обменного оборудования.

3. Провести количественную оценку величины максимальной электрической мощности, которую можно получить для конкретных условий рассматриваемой котельной.

При выборе рабочего тела было проведено расчетное исследование цикла Ренкина для следующих агентов: R134, R600a, R113, R114, R600. В результате было установлено, что наибольшая эффективность цикла для его реализации в условиях водогрейной котельной достигается при использовании хладона R600.

Для выбранного таким образом рабочего тела был проведен анализ влияния на вырабатываемую мощность температуры перегрева пара (рис. 2а), давления пара на входе Pн (рис. 2б) и выходе Pк (рис. 2в) двигателя.

Из приведенных графиков следует, что рассматриваемые характеристики практически не зависят от температуры перегрева рабочего тела и улучшаются с возрастанием Pн и уменьшением Pк. В то же время увязка параметров когенерационной установки с режимом работы источника тепла показывает, что увеличение Pн ограничивается необходимостью обеспечить достаточную разность температур в испарителе между испаряющимся рабочим телом и греющим теплоносителем, т.к. температура последнего определяется режимом работы водогрейного котла.

Конечное давление Pк должно выбираться в зависимости от температуры конденсации агента, которая в свою очередь определяется температурным уровнем тепловоспринимающей среды (холодной воды) и необходимым температурным напором в конденсаторе.

Для конкретных расчетов предлагаемой схемы была выбрана котельная с тремя котлами ТВГ-8 с подключенной тепловой нагрузкой по отоплению 14,1 МВт и по горячему водоснабжению 5,6 МВт (зимний режим). В котельной имеется бойлерная установка, обеспечивающая подогрев горячей воды на нужды ГВС. Расчетная температура сетевой воды на выходе из котлов 130 ОC. Суммарная потребляемая мощность - до 230 кВт в отопительный период и до 105 кВт летом.

Значения параметров и расходов теплоносителей в узловых точках схемы, полученные в результате расчетов, приведены в таблице.

Электрическая мощность ЭГК в отопительный период составила 370 кВт, в летний 222 кВт.

При проведении расчетов расход рабочего тепла определялся, исходя из возможности по-

тока холодной воды обеспечить полную конденсацию агента. Различие в получаемой мощности в зимний и летний периоды работы источника тепла связано с уменьшением количества агента, которое может быть сконденсировано, из-за увеличения температуры холодной воды, поступающей в конденсатор (+15 ОC).

Выводы

1. Существует реальная возможность повысить энергоэффективность водогрейных котельных путем организации производства электроэнергии в установках, использующих низко-кипящее рабочее тело.

2. Величина электрической мощности, которая может быть получена при осуществлении когенерации, существенно превышает собственные нужды котельной, что гарантирует ее автономное электроснабжение. При этом отказ от покупной и реализация избыточной электроэнергии должны существенно улучшить экономические показатели источника тепла.

3. Несмотря на невысокие значения КПД цикла, в схеме практически отсутствуют потери подведенной теплоты (кроме потерь в окружаю-

щую среду), что позволяет говорить о высокой энергетической и экономической эффективности предлагаемого решения.

Литература

1. Репин Л.А., Чернин Р.А. Возможности производства электрической энергии в паровых котельных низкого давления //Промышленная энергетика. 1994. №6. С.37-39.

2. Патент 32861 (RU). Тепловая схема водогрейной котельной/Л.А. Репин, А.Л. Репин//2006.

3. Комбинированная геотермальная электростанция с бинарным циклом мощностью 6,5 МВт// Российские энергоэффективные технологии. 2002. № 1.

Продление ресурса и уменьшение расхода природного газа водогрейными котлами ТВГ-КВГ.

Котлы ТВГ (ТВГ-8, ТВГ-8М, ТВГ-4р) и их развитие КВГ (КВГ-7,56, КВГ-4,65) с параметрами 4-10 МВт, воды 150/70 ºС, 8 атм., разработаны Институтом газа НАН Украины и выпускаются Монастырищенским машиностроительным заводом (ВАТ «ТЕКОМ» г. Монастырище Черкасской обл.). Практически все котлы превысили заводской срок эксплуатации (14 лет) и продолжают эксплуатироваться. Котлы ТВГ-КВГ ремонтопригодны и их срок службы ограничивается выходом из строя конвективной поверхности нагрева, изготавливаемой из труб диаметра Ø28×3 мм и необходимостью замены горелочных устройств. После замены этих элементов на усовершенствованные котлы могут работать ещё 10-14 лет с повышенным КПД и уменьшенным расходом природного газа на 4-5%.

Методы модернизации котлов ТВГ-8, ТВГ-8М, ТВГ-4р, КВГ-7,56, КВГ-4,65.

1. Замена газовых горелок на усовершенствованные подовые щелевые горелки 3-го поколения МПИГ-3 с профилированными соплами и дополнительной воздухораспределительной решёткой типа «кольчуга».Преимущества: неизменная геометрия сечения газовых сопел, которые практически не засоряются и соотношение газ/воздух остаётся очень близким к первоначально заданным при режимной наладке, длительный ресурс эксплуатации горелки 10-14 лет, см. рис.

2. Замена конвективных поверхностей нагрева – вместо труб Ø28×3 мм применены трубы Ø32×3 мм или Ø38×3 мм. Преимущества: а) увеличение диаметра трубы уменьшает гидравлическое сопротивление и при плохом качестве воды в системе конвективная поверхность не так быстро выходит со строя; б) за счёт увеличения поверхности нагрева повышается КПД котла.

В результате модернизации котлов ТВГ-8, ТВГ-8М, ТВГ-4р, КВГ-7,56, КВГ-4,65 указанными выше методами можно повысить КПД котлов до 94-95%, снизить расход природного газа и эмиссию монооксида углерода, продлить ресурс котлов на 10-14 лет.

В табл. приведены основные показатели котла ТВГ-8М до модернизации и после (г.Киев, р/к Депутатская, 2, испытание проведено службой наладки «Жилтеплоэнерго Киевэнерго») с заменой горелочных устройств на новые подовые горелки МПИГ-3 и новой конвективной поверхность из труб Ø32×3 мм.

Параметры

ТВГ-8М до модернизации

ТВГ-8М после модернизации

Теплопроизводительность котла, Q к, Гкал/ч

Расход воды через котел, D, т/ч

Гидравлическое сопротивление, ΔP к, кг/см 2

Аэродинамическое сопротивление, ΔН, кг/м 2

Температура уходящих газов,t ух, °С

СО, мг/нм 3

NO х, мг/нм 3

КПД котла брутто, η к, %

Модернизация, например, котла ТВГ-8(ТВГ-8М) обеспечивает экономический эффект на одном котле – 253,8 тыс.грн./год, (экономию газа 172 тыс.м 3 /год или за 15 лет 2,6 млн.м 3) по сравнению с закупкой и установкой нового заводского котла.

Затраты на модернизацию одного котла ТВГ-8(ТВГ-8М) составляют 360 тыс.грн. Окупаемость 1 год и 5 мес.

Институт газа НАН Украины осуществляет передачу технической документации на изготовление горелок и конвективной поверхности нагрева (по договору), шеф-монтаж и пуско-наладку, при необходимости изготавливает самостоятельно конвективную поверхность нагрева и горелки.

Перспективы модернизации отечественного парка паровых и водогрейных котлов.

В Украине преимущественно эксплуатируется парк паровых и водогрейных котлов серий ДКВР, ДЕ, Е, ТВГ, КВГМ, ПТВМ и т.д., обеспечивающих тепловой энергией как производственную сферу, так и жилищно-комунальное хозяйство Украины. Уровень оборудования и автоматики не отвечает действующим нормам по использованию топлива, электроэнергии и экологическим показателям. А тут можно прочитать статьи про малоэтажное строительство на строительном портале. Эту проблему можно решить двумя путями: Полной заменой котлов на новые, современные; Модернизацией существующего парка котлов. Первый путь требует от владельцев теплогенерирующих установок больших капитальных вложений, что на сегодняшний день под силу только некоторым крупным успешно работающим предприятиям. Для других предприятий более реальным является второй путь - модернизация своих теплогенерирующих установок путем замены газогорелочных устройств на импортные аналоги или применение автоматики для котлов на базе импортных комплектующих с использованием штатных горелок или новых горелок серии ГМУ. Импортные горелки фирм "Weishopt", "Ecoflame" установлены на котлах Монастырищенского завода Е2,5-0,9 и Ивано-Франковского завода ВК-22. Эксплуатация этих котлов показала удовлетворительную работу всего оборудования. Примером использования штатной горелки ГМГ-4 на паровом котле ДКВР 6,5/13 является Чижевская бумажная фабрика (ЧПФ). Впервые в практике эксплуатации котлов серии ДКВР газовая горелка ГМГ-4 была переведена в режим полного автоматического розжига и регулирования нагрузки парового котла без постоянного присутствия обслуживающего персонала. Автоматическое регулирование нагрузки по давлению пара в барабане котла позволяет удерживать давление пара на заданном значении ±0,1 кгс/см2 при значительных изменениях расхода пара (до 70% со стороны потребителя). В случае прекращения потребления пара автоматика котла останавливает горелку до момента следующей потребности в паре. Такой режим работы котла с переменной паровой нагрузкой позволяет значительно экономить топливо. Отказ от традиционных методов дроссельного регулирования таких параметров, как уровень воды в верхнем барабане, разрежение в топке котла, давление воздуха перед горелкой и переход на принципиально новый способ регулирования вышеуказанных параметров путем изменения числа оборотов электродвигателей вспомогательного оборудования с помощью частотных преобразователей позволило значительно уменьшить затраты электроэнергии на производство пара. Потребленная электродвигателями вспомогательного оборудования электроэнергия на одну тонну произведенного пара до реконструкции составляла 7,96 квт/т, а после реконструкции составляет 1,98 кВт/т. Таким образом, за срок годичной эксплуатации котла на Чижевской бумажной фабрике, который составляет 8000 часов, экономия электроэнергии достигла 253000 кВт. Средневзвешенный коэффициент полезного действия котла ДКВР 6,5/13 после реконструкции составил 90-90,5% вместо 87,5%. Для современных гидравлических схем водогрейных котельных решена проблема применения погодозависимого регулятора регулирующего температуру теплоносителя в подающей магистрали в зависимости от температуры наружного воздуха при сохранении условия для прямоточных водогрейных котлов tВХ≥70°С. Проблема решена при помощи применения регулируемой гидравлической стрелки. Использование погодозависимого регулятора позволяет экономить топливо до 30%. В настоящее время на все типоразмеры отечественных котлов разработаны схемы по реконструкции с использованием выше перечисленных технологий. Сроки окупаемости затраченных средств на модернизацию паровых или водогрейных котлов составляют 1,0 ÷2,0 года в зависимости от времени эксплуатации в течение года.

Рециркуляционные насосы предназначаются в первую очередь для эффективного перекачивания теплоносителей в отопительных системах многоквартирных и частных домов, для рециркуляции воды из котельной или бойлерной в трубопроводы и для оптимизации давления внутри трубопроводов.

Кроме того, рециркуляционный насос должен обеспечивать практически мгновенный доступ горячей воды к точкам водозабора и максимально быстро доносить горячий теплоноситель до всех радиаторов отопления и подогрева полов.

1 Общие технические характеристики

Рециркуляционный насос в стандартной комплектации состоит из:

  • теплоизолирующего кожуха;
  • обратного и запорного клапанов;
  • резьбового соединения между корпусом насоса и двигателем с ротором мокрого типа;
  • индикаторов работы аппарата;
  • термостата для экономичной работы и защиты аппарата;
  • проточной части из бронзы, нержавеющей стали или чугуна;
  • сферического ротора со встроенным рабочим колесом;
  • штекерного разъема;
  • таймера с суточной шкалой.

Насос рециркуляции с усовершенствованиями механизмов исполняется из термостойких композитных материалов для рабочих колес, ферритной нержавеющей стали для монолитных гильз ротора и керамических сплавов для подшипников. Статоры делают с обмотками, которые устойчивы к току блокировки. А корпуса доукомплектовываются воздухоотделителями.

Рециркуляционный насос при помощи двигателя и электронного переключателя регулирует амплитуду напряжения и периодичность запуска мотора. Насос для рециркуляции обладает двумя основными показательными характеристиками, которые необходимо учитывать при выборе модели.

Это показатели напора и расхода, которые называются характеристиками пропускной мощности . При несоответствии характеристик насоса и мощности отопительной системы возможны:

  • частичный обогрев дома;
  • длительный слив остывшей воды из горячего крана;
  • понижение КПД всей отопительной системы;
  • повышение уровня шума;
  • интервалы между включением и отключением сокращаются, а это ведет к износу двигателя.

При подключении насоса рециркуляции к котлу обустраивают обратный трубопровод или отводная линия, чтобы вода беспрепятственно возвращалась в нагревательный прибор. Одноконтурные котлы подключаются к рециркулярной линии сразу за насосом. Двухконтурные котлы чаще подключают к линии холодного водоснабжения.

Не следует путать рециркулярный насос с техникой для повышения давления. Рециркулярник не повышает, а компенсирует давление, которое создается сопротивлением трубопровода и запорной арматуры. Гидравлическая балансировка просто поддерживает оптимальную скорость потока теплоносителя, чтобы не допускать потери тепла ниже 50 ˚С.

При нормальной регуляции системы и правильном подборе модели насоса таймер на включение должен срабатывать не чаще, чем раз в 15-20 минут. Естественно, что трубопровод должен быть хорошо изолирован, чтобы минимизировать теплопотери.

1.1 Расчеты

Расход воды в системе для определения нужной модели аппарата высчитывается по формуле

QC= f/dt * 4200, где:

  • QC – это расход воды, которая охлаждается, и измеряется в кубометрах в секунду;
  • f – это показатель потерь тепла в системе циркуляции, который измеряется в кВт;
  • dt – это водяное охлаждение в самой дальней точке водозабора, за которое принимают значение в 5˚С.

Расчет диаметра труб должен исходить из того, какой объем воды циркулирует в трубе от котла до крана. При объеме воды в 3 литра, в зависимости от диаметра трубы будет изменяться и расстояние ветки обратной циркуляции. Таблица соответствий выглядит следующим образом:

  • при трубе 16 мм в диаметре- 27 метров;
  • при трубе 20 мм в диаметре - 18 метров;
  • при трубе 25 мм в диаметре - 12 метров;
  • при трубе 32 мм в диаметре - 6,5 метров.

2 Модельный ряд

Рециркулярные напорные аппараты таких именитых производителей, как Grundfos, Wilo, Imp Pumps, Halm и многих других могут обеспечивать подачу горячего теплоносителя в радиаторы и теплые полы, краны и трубы по всему дому своевременно и в требуемом объеме. Рассмотрим некоторые популярные на рынке модели.

2.1 Grundfos UP 15-14 BА РМ

Это модель для промышленного и бытового использования, которая оптимизирует работу систем ГВС и отопления. Напорный аппарат мгновенно подает в краны горячую воду и минимизирует потери тепла при циркуляции в трубопроводах.

Укомплектована эта модель практически бесшумным ротором мокрого типа, и регулятором, который обеспечивает три режима работы в зависимости от требований и технических характеристик системы.

Режим постоянного цикла водоснабжения обеспечивает бесперебойную постоянную работу, режим контроля температур автоматически включает насос если температура теплоносителя понизилась ниже заданного уровня. И режим АutoАdapt контролирует состояние всей системы, подстраивая ее под изменение текущих запросов и параметров.

Подключается аппарат при помощи соединителей типа «американка» и дроссельных клапанов, работает в температурном диапазоне от +2 ˚С до +95 ˚С. Работает с горячей и холодной водой при напоре в 1 м/с, при давлении в 10 атмосфер.

Помимо серии UP, компания Grundfos поставляет на рынки напорную технику для отопления и систем ГВС марок ALPHA2, COMFORT, MAGNA/UPE, TP иTPE.

2.2

Это сдвоенная циркуляционно-рециркулярная техника, с ротором мокрого типа и фланцевыми соединениями. Электронно-коммутируемый электродвигатель с автоматическим регулятором мощности. Аппараты применяют для систем отопления и кондиционирования, в закрытых контурах охлаждения и промышленных циркуляционных системах.

Температурный диапазон носителя в системе от минус 10° C до +110° C и давление от 6 до 16 бар в зависимости от варианта стандартного или специального исполнения делают эту техник достаточно универсальной для использования в промышленном и частном секторе.

Кроме этой модели, компания Wilo может предоставить на выбор и другие модели, которые подходят для установки в системах ГВС и отопления. Это марки Wilo-Stratos PICO и Wilo-Stratos GIGA, Wilo-CronoTwin-DL-E и Wilo-CronoLine-IL-E, Wilo-CronoBloc-BL-E и Wilo-VeroLine-IP-E.

2.3 Насос рециркуляции ГВС Wilo Star-Z Nova: обзор, монтаж (видео)


2.4 IMP Pumps NMT

Предназначены для отопления, климатических установок и перекачки бытовой чистой бытовой воды. Аппараты NMT — это конвейерная конструкция с ротором мокрого типа, встроенной управляющей электроникой, стабилизаторами и аппаратурой связи. Выпускаются в одиночном и сдвоенном вариантах.

Различают также два вида подсоединения, от которого напрямую зависят остальные характеристики этой аппаратуры. Так при резьбовом подключении в 15-32 мм достигается максимальная производительность 2,6 — 4,5 кубических метра в час, при максимальной высоте подъема в 14 – 17 метров и давлении в 6-10 бар.

Мощность аппаратов колеблется в пределах 500 – 1600 Вт, а допустимая температура для нормальной работы от 5° C до 95° C. Класс изоляции –Н, и материал, из которого изготовлен корпус – чугун.

При фланцевом подключении в 40 — 100 мм все характеристики вырастают на несколько порядков. Максимальная производительность 27 – 78 кубических метра в час, при максимальной высоте подъема в 4,0 — 8,0 метров и давлении в 10 бар.

Мощность аппаратов колеблется в пределах 25 – 75 Вт, а допустимая температура для нормальной работы от — 10° C до +110° C. Класс изоляции – Н, и материал, из которого изготовлен корпус – чугун.

Помимо этой модели, техника для отопления и ГВС представлена такими моделями, как IMP Pumps NMTD, IMP Pumps EGHN, IMP Pumps GHN, IMP Pumps GHND, IMP Pumps GHNM и IMP Pumps SAN basic.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Характеристика блочно-модульной котельной и участка строительства. Определение нагрузок в тепле и топливе. Подбор котлов, горелок, основного и вспомогательного оборудования. Расчет газопроводов, водоподготовка. Автоматизация газового водогрейного котла.

    дипломная работа , добавлен 20.03.2017

    Устройство и назначение водогрейного отопительного котла Buderus Logano S828, принцип его работы. Обоснование требований к системе автоматического управления, разработка ее технической структуры. Выбор датчика температуры воды, пускателя и контроллера.

    курсовая работа , добавлен 20.05.2012

    Реконструкция газоотводящего тракта водогрейного котла ПТВМ-50, расположенного на котельной ЖМР-16. Установка конденсационных теплоутилизаторов и теплового насоса в газоотводящем тракте; использование уходящих продуктов сгорания, снижение расхода топлива.

    дипломная работа , добавлен 24.07.2013

    Расчёт тепловой схемы котельной, выбор вспомогательного оборудования. Максимально-зимний режим работы. Выбор питательных, сетевых и подпиточных насосов. Диаметр основных трубопроводов. Тепловой расчет котла. Аэродинамический расчёт котельной установки.

    курсовая работа , добавлен 08.10.2012

    Расчет тепловой схемы котельной закрытого типа с водогрейными котлами. Выбор основного и вспомогательного оборудования, определение исходных данных для аэродинамического расчета газового и воздушного трактов. Расчет технико-экономических показателей.

    курсовая работа , добавлен 19.11.2013

    Техническая характеристика водогрейного котла. Расчет процессов горения топлива: определение объемов продуктов сгорания и минимального объема водяных паров. Тепловой баланс котельного агрегата. Конструкторский расчет и подбор водяного экономайзера.

    курсовая работа , добавлен 12.12.2013

    Принцип работы водогрейного котла ТВГ-8МС, его конструкция и элементы. Расход топлива котла, определение объемов воздуха и продуктов сгорания, подсчет энтальпий, расчет геометрических характеристик нагрева, тепловой и аэродинамический расчеты котла

    курсовая работа , добавлен 13.05.2009


Схема установки рециркуляционного насоса. Рециркуляционные насосы устанавливаются в котельных с водогрейными котлами для частичной подачи горячей сетевой воды в трубопровод, подводящий воду к водогрейному котлу.
Рециркуляционный насос должен создавать напор, способный преодолеть гидравлическое сопротивление водогрейного котла и рециркуляционных трубопроводов.
Рециркуляционные насосы, предназначенные для повышения температуры воды на входе в котлы, устанавливают в водогрейных котельных.
Резервные рециркуляционные насосы не предусматриваются.
Группа сетевых, питательных и рециркуляционных насосов размещается вдоль фронта котлов, что сокращает длину трубопроводов и позволяет обслуживать их одним подвесным краном; химводоочистка (ХВО) и деаэраторы расположены в постоянном торце котельной. Для котельных с открытой системой теплоснабжения в данной компоновке предусматриваются дополнительные площади для ХВО и деаэраторов.
Принципиальная тепловая схема котельной с тремя котлами ТВГ. В - рециркуляционный насос; 6 - сетевой насос; 7 - подогреватель химически очищенной воды; 8 - охладитель выпара; 9 - деаэратор; 10 - подпиточный насос; / / - эжектор; 12 - насос.
Устройство радиального флотатора.| Устройство многокамерного флотатора. IS - рециркуляционный насос; 13 - эжектор водо-воздушный; / 4-распределительные трубы; / 5 - диафрагмы; 16 - вихревой смеситель; 17 - эжектор для подачи раствора коагулянта; 18 - гидроэлеватор.
Затем включают рециркуляционные насосы, и краска начинает перемешиваться. После достижения нужной вязкости краска тем же насосом перекачивается в бак-раздатчик такой же емкости, как и бак-смеситель.
В котельной установлены рециркуляционные насосы 3, которые с помощью автоматического клапана 4 поддерживают температуру воды перед котлами соответственно требованиям по защите котлов от сернистой коррозии.

В этой компоновке котельной сетевые и рециркуляционные насосы установлены перед фронтом котлов, а щиты с контрольно-измерительными приборами - над ними на этажерке. Постоянный торец занят трансформаторной подстанцией, ремонтными мастерскими и бытовыми помещениями.
В этой компоновке котельной сетевые и рециркуляционные насосы установлены перед фронтом котлов, а щиты с контрольно-измерительными приборами - над ними на этажерке. Постоянный торец занят трансформаторной подстанцией, ремонтными мастерскими и бытовыми - помещениями.
Включают рециркуляционный насос раствора, затем рециркуляционный насос холодной воды (при испарителе закрытого типа) и насос холодной технологической воды. Когда будет достигнута необходимая температура, подают холодную технологическую воду потребителям. Полностью налаживают циркуляцию раствора.
K количество воды, подаваемое рециркуляционным насосом, равно нулю. С уменьшением температуры сетевой воды количество воды, подаваемое рециркуляционным насосом, увеличивается. При повышении температуры воды после водогрейного котла количество воды, подаваемой рециркуляционным насосом, уменьшается, но возрастает расход обратной сетевой воды через перемычку. Это уменьшает расход воды через водогрейный котел, что допустимо до определенного предела, при котором имеется опасность вскипания воды в котле.
Горячая вода из выходного коллектора котла рециркуляционным насосом 2 подается во входной коллектор и, смешиваясь с обратной сетевой водой, подогревает ее.
На рис. 10 - 2 представлена схема установки рециркуляционного насоса и регулятора, поддерживающего требуемую температуру воды, отпускаемой потребителям. Регулирование температуры воды, поступающей в водогрейный котел, и температуры воды, отпускаемой потребителям, осуществляется следующим образом. Количество воды, подаваемое рециркуляционным насосом, регулируется так, чтобы получить необходимую температуру воды на входе в водогрейный котел. Однако при этом температура воды на выходе из котла может оказаться выше температуры, необходимой потребителям. Для поддержания заданной температуры воды, отпускаемой потребителям, часть воды из обратной линии по перемычке направляется в прямую линию.
На рис. 10 - 2 представлена схема установки рециркуляционного насоса и регулятора, поддерживающего требуемую температуру воды, отпускаемой потребителям. Регулирование температуры воды, поступающей в водогрейный котел, и температуры воды, отпускаемой потребителям, осуществляется следующим образом. Количество воды, подаваемой рециркуляционным насосом, регулируется так, чтобы получить необходимую температуру воды на входе в водогрейный котел. Однако при этом температура воды на выходе из котла может оказаться выше температуры, необходимой потребителям. Для поддержания заданной температуры воды, отпускаемой потребителям, часть воды из обратной линии по перемычке направляется в прямую линию. Количество воды, отбираемой из обратной линии в прямую, регулируется регулятором температуры сетевой воды.
B t B K количество воды, подаваемое рециркуляционным насосом, равно нулю. С уменьшением температуры сетевой воды количество воды, подаваемое рециркуляционным насосом, увеличивается. При повышении температуры воды после водогрейного котла количество воды, подаваемое рециркуляционным насосом, уменьшается, но возрастает расход обратной сетевой воды через перемычку. Это уменьшает расход воды через водогрейный котел, что допустимо до определенного предела во избежание вскипания воды в котле.
Гкал / ч допускается, при технико-экономическом обосновании, установка рециркуляционных насосов к каждому котлу или к группе котлов.
При повышении температуры воды после водогрейного котла количество воды, подаваемой рециркуляционным насосом, уменьшается, но возрастает расход обратной сетевой воды через перемычку. Это уменьшает расход воды через водогрейный котел, что допустимо до определенных границ, при которых имеется опасность вскипания воды в котле.
При работе котла с кном сопз1: увеличивается расход электроэнергии на привод рециркуляционных насосов на - 20 % при графике 70 / 150 С и на 7 - 8 % при графике 104 - 110 / 150 С.
Показатель применим для насосов с нестабильной характеристикой самовсасывания, например, для рециркуляционных насосов, у которых характеристика изменяется в результате нагрева.
В отопительных котельных устанавливаются сетевые и под-питочные насосы, а при наличии водогрейных котлов - дополнительно рециркуляционные насосы.
Схема районной котельной с водогрейными котлами ПТВ. В тех случаях, когда обратная вода в сети имеет температуру ниже 50 С, включаются рециркуляционные насосы 3 для подмешивания части воды из подающего коллектора.

Лакокрасочные материалы загружают для предварительного перемешивания в приводные пропеллерные краскомешалки, из которых они при помощи рециркуляционных насосов подаются в бак-смеситель для окончательного перемешивания. Если поступающие материалы достаточно жидкие, то предварительное перемешивание можно не производить.
Химический состав продукта.| Расходные коэщрциен ы на I т ЖКУ. На всех предприятиях отмечается сшшенже расхода электроэнергии, что объясняется сокращением времени работы мешалок хранилищ СФК, рециркуляционных насосов на складе готовой пго-цукцаи и уменьшением расхода пара в весенне-летнее вреья.
В связи с этим требуется увеличение числа ультрафильтров примерно на 1 / 3 с одновременным увеличением мощности рециркуляционных насосов. В последнее время появились сообщения о разработке специальных ультрафильтрационных и электродиализных мембран, стойких в широком интервале рН, которые по производительности и сроку службы не уступают мембранам, используемым при анодном электроосаждении. Переход на катодное электроосаждение позволяет достичь лучших защитных характеристик, покрытий, особенно при окраске кузовов легковых автомобилей, так как обеспечивается более надежная защита труднодоступных и скрытых участков.
К ним относятся средневзвешенный диаметр трубопроводов и материальная характеристика главной магистрали и теплосети, мощности и стоимости сетевых и рециркуляционных насосов в котельной.
Краскомешалка батарейная на 4 бака. Подаваемые в бочках лакокрасочные материалы загружают для предварительного перемешивания в приводные пропеллерные краскомешалки, из которых они при помощи рециркуляционных насосов 6 подаются в бак-смеситель 1 для окончательного перемешивания. Если поступающие материалы достаточно жидки, то предварительное перемешивание можно не производить.
Трубопроводы от поддона каждого кондиционера до самотечной магистрали следует проверять на кратковременный пропуск количества воды, равного полной подаче рециркуляционного насоса. Магистрали должны рассчитываться на пропуск количества воды, подводимой в камеру орошения извне. Эти количества обычно меньше суммы подач циркуляционных насосов данной группы. Вода, циркулирующая в системе орошения, и вода, подаваемая извне, подвергается очистке в сетчатых фильтрах.
Структурная схема районного теплоснабжения от водогрейной.| Структурная схема районного теплоснабжения от паровой котельной. Для повышения температуры воды, поступающей в котлы, до значений выше точки росы (с целью предотвращения сернистой коррозии поверхностей нагрева) применяют так называемый рециркуляционный насос 2, подающий горячую воду из линии после котлов в линию перед котлами.
Схема флотационной установки. Для доочистки сточных вод, содержащих менее 30 мг / л нефтепродуктов, применяют флотационные установки (рис. 97), которые состоят из двух многокамерных флотаторов, рециркуляционных насосов, напорного бака и баков для приготовления коагулянта.
Схема флотационной установки. Для доочистки сточных вод, содержащих менее 30 мг / л нефтепродуктов, применяют флотационные установки (рис. 95), которые состоят из двух многокамерных флотаторов, рециркуляционных насосов, напорного бака и баков для приготовления коагулянта.

Установка (рис. 44) состоит из четырехкамерного флотатора емкостью 7 м3, гидроэлеватора 2 (или низконапорного насоса), напорного бака 11 емкостью 0 35 м3, рециркуляционного насоса 12, воздушного эжектора 13, затворного блока 3, дозирующего бака 4, пусковой и контрольно-измерительной аппаратуры и устройств автоматического управления.
Паровая система теплоснабжения с возвратом конденсата. Пояснения к рис. 2 - 8 - 2 - 12: / - паровой котлоагрегат; 2 -редукционная установка; 3 и 4 - сборные баки конденсата котельной и потребителя; 5 - конденсатный насос; 6 - предохранительное устройство: 7 - регулятор давления в сборном баке; 8 - технологический аппарат с возвратом чистого конденсата; 9 - технологический аппарат с загрязненным конденсатом; 10 - технологический аппарат со смешивающим подогревом; 11 - подогреватель юрячей воды для душей и технологии; 12 - подогреватель отопления; 13 - конденсатоотводчик; 14 - циркуляционный насос; 15 - водогрейный котел; 16 - рециркуляционный насос; 17 - регулятор температуры; 18 - сетевой насос; IS - водоподготовка; 20 - подпиточный насос; 21 - регулятор давления; 22 - коммунальный потребитель; 23 - промышленный потребитель; 24 - двухступенчатый подогреватель горячего водоснабжения; 25 - узел отопления с элеватором; 26 - подогреватель горячего водоснабжения; 27 - узел отопления со смесительным насосом; 28 и 29 - - потребители; 30 - узел отопления с подогревателем; 31 - узел смешения для горячего водоснабжения; 32 и 33-пароводяные подогреватели.
В соответствии со СНиП 4 П-35-76 установка рециркуля - Кз сети ционных насосов производится в случае требования заводов - изготовителей водогрейных котлов постоянной температуры воды на входе или выходе из котла. Производительность рециркуляционного насоса определяется из уравнения баланса смешивающихся потоков сетевой воды в обратной линии и горячей воды на выходе из водогрейного котла.
Краскомешалка батарейная на 4 бака. Загруженные в бак-смеситель материалы разбавляются растворителем, поступающим из подвесного бака 3 через мерник 4, контролирующий количество поданного растворителя. Затем включаются рециркуляционные насосы, и краска начинает перемешиваться.
Конструкция корпуса и параметры пара (7 24 МПа, 288 С) модернизированного реактора оставлены, в основном, без изменений. Главным отличием является расположение рециркуляционных насосов внутри корпуса реактора вместо наружной системы рециркуляции в действующих реакторах. Это позволяет упростить технологию изготовления нижней части корпуса, существенно уменьшить размеры реакторного помещения, сократить длину трубопроводов.
При требовании заводов-изготовителей водогрейных котлов о необходимости поддержания постоянной температуры воды на входе или выходе из котла следует предусматривать установку рециркуляционных насосов. Как правило, необходимо предусматривать общие рециркуляционные насосы для всех водогрейных котлов. Количество насосов должно быть не менее двух.
Рециркуляционные насосы устанавливаются в котельных с водогрейными котлами для частичной подачи горячей сетевой воды в трубопровод, подводящий воду к водогрейному котлу. В соответствии со СНиП П-35-76 установка рециркуляционных насосов производится в случае требования заводами - изготовителями водогрейных котлов постоянной температуры воды на входе или выходе котла. Производительность рециркуляционного насоса определяется из уравнения баланса смешивающихся потоков сетевой воды в обратной линии и горячей воды на выходе из водогрейного котла.
Очищенная вода из сборных лотков флотаторов стекает в промежуточный резервуар вместимостью 100 м3, откуда, переливаясь с верхнего уровня по самотечному напорному трубопроводу, сбрасывается в море. С нижнего уровня промежуточного резервуара вода забирается рециркуляционными насосами и подается в напорные баки. Одновременно во всасывающую трубу насоса вводится атмосферный воздух, подсасываемый эжектором, действующим за счет напора воды, создаваемого насосом. Количество воздуха составляет 3 - 5 % от общего расхода очищаемой воды. Перемешанная с воздухом вода поступает в напорные баки, где воздух растворяется в воде. Вместимость бака рассчитана на двухминутное пребывание воды в нем. Из напорных баков насыщенная воздухом вода под давлением 0 4 - 0 6 МПа подается в камеры смешения перед резервуаром-отстойником и флотаторами. Здесь она смешивается с потоком очищаемой воды и выпускается в резервуар-отстойник и флотатор.
На сборники, выполняющие роль фундамента, устанавливают шесть секций экстрактора в последовательности заводской маркировки, в которых монтируют цепи с подносами, оросители и ворошители. Затем монтируют загрузочный элеватор с приводом, устанавливают рециркуляционные насосы. Насосы обвязывают системой трубопроводов с установленной запорной арматурой.
В то же время, в крупных районных котельных, снабжающих в основном теплотой жилищные массивы городов, как правило, устанавливается небольшое количество мощных водогрейных котлов, работающих в отопительном режиме с температурой 150 - 70 С. Как правило, с целью уменьшения расхода энергии на рециркуляционные насосы такие котельные работают в режиме с постоянной температурой сетевой воды на входе в котел i 70 C. При таком режиме работы котлов осуществление вакуумной деаэрации подпиточной воды встречает известные затруднения и поэтому часто от ее применения отказываются и переходят на атмосферные деаэраторы, работающие не на горячей воде, а на паре.

Вопрос №19.Автоматизация водогрейных котельных установок

Водогрейные котлы отличаются от паровых наличием водяного контура вместо водо-парового. Это не требует ряда локальных систем регулирования – уровня воды в барабане, температуры пара через пароохладители, продувки котла. С другой стороны появляются новые контуры регулирования в водяном тракте.

Для уменьшения интенсивности наружной коррозии труб водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы при работе на природном газе равна 60 С. Для обеспечения этого необходимо подавать некоторое количество горячей воды, вышедшей из водогрейных котлов, снова на вход в котел для смешения с водой из обратного трубопровода и подпиточной водой. Линию, по которой перекачивают нагретую воду с выхода котла на его вход, так же, как и специальный насос, называют рециркуляционными (рис. 26).

С помощью регулировочного клапана в линии рециркуляции регулируется температура входной воды в котел. Во первых, это происходит на период разогрева котла. В это время t вых <60 0 C, tвх<<60 0 C. Для уменьшения коррозии труб котлов требуется уменьшить время разогрева полным открытием линии рециркуляции, не включая сетевые насосы до момента t вых =60C,. После чего следует включить сетевые насосы, а линию рециркуляции постепенно закрывать, обеспечивая t вх =60 0 C. При t обр > 60 0 C линия рециркуляции становится не нужна – регулировочный клапан закрыт. В осенне-весенний период, когда t обр < 60 0 C. линия рециркуляции становится нужна и в установившемся режиме работы,

Для обеспечения расчетной температуры воды в прямом трубопроводе тепловой сети при качественном регулировании подмешивается сетевая вода из обратного трубопровода. Часть воды из обратной линии, минуя котлы, подают по линии перепуска через регулировочный клапан в подающую магистраль, где она, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в прямом трубопроводе.

Наличие линий рециркуляции и перепуска воды приводит к специфичным режимам работы водогрейных котлов. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. С другой стороны, при качественном регулировании теплопотребления в стационарном режиме требуется постоянство расхода теплоносителя в тепловой сети, постоянство разницы давлений в прямом и обратном трубопроводах у потребителя для реализации проектных гидравлических настроек теплопотребления. Ручная настройка операторами вышеперечисленных контуров регулирования с помощью обычных задвижек без средств автоматизации, регуляторов не приводят к экономически оправданным результатам.

В водяных котельных, предназначенных для получения горячей воды (не более 150 °С) роль питательных насосов для подачи воды в котел выполняют сетевые насосы. Подпиточные насосы обеспечивают компенсацию невозврата сетевой воды.

В системах отопления все более распространяются водогрейные блочные котельные. Для осуществления безнакипного режима работы устанавливают дозаторы (добавки для умягчения воды). Применение закрытой системы горячего водоснабжения резко уменьшает потребное количество деаэрированной воды. Тепловые схемы котельных для закрытых систем теплоснабжения проще, чем для открытых не только конструктивно. В них уменьшается мощность оборудования химводоподготовки и ниже требования к качеству подпиточной воды.