Задание 16 ЕГЭ 2015.Тела вращения.

Иванова Е.Н.

МБОУ СОШ №8 г. Каменск-Шахтинский


Отрезок AB c , параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью вращения является боковая поверхность цилиндра, радиус основания которого равен 2, образующая равна 1. Площадь этой поверхности равна 4 .


Отрезок AB длины 1 вращается вокруг прямой c , перпендикулярной этому отрезку и отстоящей от ближайшего его конца A на расстояние, равное 2 (прямые AB и с лежат в одной плоскости). Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является кольцо, внутренний радиус которого равен 2, а внешний – 3. Площадь этого кольца равна 5 .


Отрезок AB c , перпендикулярной этому отрезку и проходящей через его середину. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 1. Его площадь равна.


Отрезок AB длины 2 вращается вокруг прямой c A . Найдите площадь поверхности вращения.


Отрезок AB c , перпендикулярной этому отрезку и проходящей через точку C , делящей этот отрезок в отношении 1:2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 2. Его площадь равна 4 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через точку A и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 2, радиус основания равен 1. Ее площадь равна 2 .


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку A и отстоящей от точки B на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 3, радиус основания равен 2. Ее площадь равна 6 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через середину этого отрезка и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 1, а радиусы оснований – 0,5. Ее площадь равна.


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку C , делящей этот отрезок в отношении 1:2 и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 2 и 1, а радиусы оснований равны соответственно 1 и 0,5. Ее площадь равна 2,5 .


Отрезок AB длины 3 вращается вокруг прямой c , лежащей с ним в одной плоскости и отстоящей от концов A и B соответственно на расстояния 1 и 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 3, радиусы оснований равны 1 и 2. Ее площадь равна 9 .


Отрезок AB длины 2 вращается вокруг прямой c , лежащей с ним в одной плоскости, отстоящей от ближайшего конца A на расстояние, равное 1, и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 2, радиусы оснований равны 1 и 2. Ее площадь равна 6 .


Найдите площадь боковой поверхности цилиндра, полученного вращением единичного квадрата ABCD вокруг прямой AD .

Ответ. Искомый цилиндр изображен на рисунке. Радиус его основания и образующая равны 1. Площадь боковой поверхности этого цилиндра равна 2 .


Найдите площадь поверхности вращения прямоугольника ABCD со сторонами AB = 4, BC = 3 вокруг прямой AB и CD .

Ответ. Искомым телом является цилиндр, радиус основания которого равен 2, а образующая равна 3. Его площадь поверхности равна 20 .


Найдите площадь поверхности тела, полученного вращением единичного квадрата ABCD вокруг прямой AC .

Ответ. Искомым телом вращения является объединение двух конусов, радиусы оснований которого и высоты равны. Его площадь поверхности равна.


Найдите площадь поверхности тела, полученного вращением прямоугольного треугольника ABC с катетами AC = BC = 1 вокруг прямой AC .

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 1, а образующая равна. Площадь поверхности этого конуса равна.


Найдите площадь полной поверхности тела, полученного вращением равностороннего треугольника ABC со стороной 1 вокруг прямой, содержащей биссектрису CD этого треугольника.

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 0,5, а образующая равна 1. Площадь полной поверхности этого конуса равна 3 /4.


Найдите площадь поверхности вращения равностороннего треугольника ABC со стороной 1 вокруг прямой AB .

Ответ. Искомое тело вращения составлено из двух конусов с общим основанием, радиус которого равен, а высоты – 0,5. Его площадь поверхности равна.


Найдите объем тела вращения равнобедренной трапеции ABCD с боковыми сторонами AD и BC , равными 1, и основаниями AB и CD , равными соответственно 2 и 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой 1, на основаниях которого достроены конусы, высотой 0,5. Его объем равен.


Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD , равными соответственно 2 и 1, меньшей боковой стороной, равной 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой, равными 1, на основании которого достроен конус, высотой 1. Его объем равен.


Найдите объем тела вращения правильного шестиугольника ABCDEF со стороной 1 вокруг прямой AD .

Ответ. Искомое тело вращения состоит из цилиндра, радиус основания которого равен, а высота равна 1 и двух конусов с основаниями радиуса и высотой 0,5. Его объем равен.


ABCDEF , изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой AF .

Ответ. Искомое тело вращения состоит из двух цилиндров с основаниями радиусов 2 и 1, высотой 1. Его объем равен 5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из четырех единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. Искомое тело вращения составлено из двух цилиндров высотой 1 и радиусами оснований 1,5 и 0,5. Его объем равен 2,5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. 1. Искомое тело вращения является цилиндром с радиусом основания 1,5 и высотой 2, из которого вырезан цилиндр с радиусом основания 0,5 и высотой 1. Его объем равен 4,25 .


Найдите объем тела вращения единичного куба ABCDA 1 B 1 C 1 D 1 вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 1. Его объем равен 2 .


Найдите объем тела вращения правильной треугольной призмы ABCA 1 B 1 C AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания и высота которого равны 1. Его объем равен.


Найдите объем тела вращения правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен 2, а высота равна 1. Его объем равен 4 .


Найдите объем тела вращения правильной четырехугольной пирамиды SABCD , все ребра которой равны 1, вокруг прямой с , содержащей высоту SH этой пирамиды.

Ответ. Искомым телом вращения является конус, радиус основания и высота которого равны.

Его объем равен.


Найдите объем тела вращения единичного тетраэдра ABCD вокруг ребра AB .

Ответ. 1. Искомое тело вращения составлено из двух конусов с общим основанием радиуса и высотой 0,5. Его объем равен 0,25 .


Найдите объем тела вращения единичного правильного октаэдра S’ABCDS” вокруг прямой S"S” .

Ответ. Искомое тело вращения состоит из двух конусов с общим основанием радиуса и высотами, равными. Его объем равен.


Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой AD .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 2. Его объем равен 10 .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Тела вращения. Цилиндр, конус, шар Выполнил: Попоудин Кирилл 6 В класс

Начало исследованию объемных тел положил древнегреческий математик Евклид. Главный труд Евклида – «Начала» (лат. Elementa) - посвящен построению геометрии и состоит из 13-ти книг, к которым присоединяют две книги о пяти правильных многогранниках.

Шар Шар - это пространственная фигура. Поверхность шара называют сферой. Слово «Сфера» произошло от греческого слова «Сфайра» которое переводится как «Мяч». Сфера – это оболочка шара. Сфера обладает очень интересным свойством - все её точки одинаково удалены от центра шара. Отрезок, соединяющий любую точку сферы с центром шара, называется радиусом шара. Отрезок, соединяющий две точки сферы и проходящий через центр шара, называется диаметром шара. Диаметр шара равен двум радиусам. Шар – это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара.

Свойства шара Шар является телом вращения, так же как конус и цилиндр. Шар получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Радиус сечения тем больше, чем ближе секущая плоскости к центру шара. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью, называется большим кругом, а сечение сферы – большой окружностью. Площадь поверхности шара можно найти по формулам: S = 4 πr2 S = πd2, Объём шара находится по формуле: V = 4 / 3 πr3, где r – радиус шара, d – диаметр шара.

Шар - это наиболее знакомая вам геометрическая фигура. Мяч, глобус- это сфера, а вот арбуз, апельсин. Солнце, Луна, Земля и остальные планеты имеют форму немного сплющенного шара. Примеры предметов имеющих форму шара.

Цилиндр Цилиндр – является телом вращения, так же как конус и шар, это пространственная или объёмная фигура, которая получается при вращении прямоугольника вокруг его стороны. Полученная цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра. Слово «Цилиндр» произошло от греческого слова «Кюлиндрос», означающего «Валик», «Каток». Высота цилиндра - это расстояние между основаниями, радиус цилиндра - радиус круга, является основанием цилиндра.

Свойства цилиндра Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Сечение цилиндра, параллельные его оси, являются прямоугольниками. Сечение цилиндра плоскостью, параллельной основаниям – круг, равный основаниям. Основания цилиндра равны и лежат в параллельных плоскостях. Образующие цилиндра равны и параллельны. Площадь поверхности цилиндра. Боковая поверхность цилиндра составлена из образующих. Полная поверхность цилиндра состоит из оснований и боковой поверхности. Sполн = 2Sосн + Sбок; Sосн = π ∙R2; Sбок = 2 π ∙R∙Н Sполн = 2 π R∙(R + Н)

На рубеже 18-19 веков мужчины многих стран носили твёрдые шляпы с небольшими полями, которые так и назывались цилиндрами из-за большого сходства с геометрической фигурой цилиндром. Примеры предметов имеющих форму шара.

Конус Круговой конус - это тело, состоящее из круга (основание конуса), точки, которая не лежит в плоскости этого круга (вершина конуса) и всех отрезков, которые соединяют вершину конуса с точками основания. Конус, как шар и цилиндр, является пространственной фигурой. Конус, в отличие от цилиндра, имеет вершину. Слово «Конус» произошло от греческого слова «Конос» означающего сосновую шишку. Элементы конуса Виды конусов Прямой и косой круговой конусы с равным основанием и высотой. Эти конусы имеют равный объём.

Свойства конуса Сечение конуса плоскостью, который проходит через вершину конуса – это равнобедренный треугольник, боковые стороны этого треугольника являются образующими конуса. Плоскость, которая параллельна основанию конуса и которая пересекает конус, отсекает от него конус меньшего размера. Оставшаяся часть является усеченным конусом. Когда основание конуса является многоугольником – это уже пирамида. Площадь боковой поверхности конуса определяют с помощью формулы: S= π R·l , Полная площадь поверхности конуса (то есть сумма площадей боковой поверхности и основания) определяют с помощью формулы: S= π R(l+R), где R - радиус основания конуса, l - длина образующей.

Предметы имеющие форму конуса. Воронка Дорожные конусы Остриё иглы Суховская башня Абажур в виде усеченного конуса Коническая крыша

Телами вращения называют тела, ограниченные либо поверхностью вращения, либо поверхностью вращения и плоскостью (рисунок 134). Под поверхностью вращения понимают поверхность, полученную от вращения какой-либо линии (ABCDE ), плоской или пространственной, называемой образующей, вокруг неподвижной прямой (i ) - оси вращения .

Рисунок 134

Любая точка образующей поверхности вращения описывает окружность, расположенную в плоскости, перпендикулярной к оси вращения – параллель , следовательно, плоскость, перпендикулярная к оси вращения, всегда пересекается с поверхностью вращения по окружности. Наибольшая параллель - экватор . Наименьшая параллель - горло (горловина).

Плоскости, проходящие через ось вращения, называют меридиональными плоскостями .

На комплексном чертеже изображение тел вращения выполняется посредством изображения ребер оснований и линий очерков поверхности.

Линии пересечения меридиональных плоскостей с поверхностью называют меридианами .

Меридиональная плоскость, параллельная плоскости проекций, называется главной меридиональной плоскостью . Линия ее пересечения с поверхностью - главный меридиан .

Прямой круговой цилиндр. Прямым круговым цилиндром (рисунок 135) называют тело, ограниченное цилиндрической поверхностью вращения и двумя кругами - основаниями цилиндра, расположенными в плоскостях, перпендикулярных к оси цилиндра.Цилиндрической поверхностью вращения называется поверхность, полученная при вращении прямолинейной образующейAA 1 вокруг параллельной ей неподвижной прямой -i (ось вращения). Размерами, характеризующими прямой круговой цилиндр, являются его диаметр и высотаl (расстояние между основаниями цилиндра).

Рисунок 135

Прямой круговой цилиндр можно также рассматривать как тело, полученное при вращении какого-либо прямоугольника ABCD вокруг одной из его сторон, например, ВС (рисунок 136). Сторона ВС является осью вращения, а сторона AD - образующей цилиндра. Две другие стороны обозначат основания цилиндра.

Рисунок 136

Прямоугольника АВ и CD при вращении образуют круги - основания цилиндра.

Построение проекций цилиндра.

Построение горизонтальной и фронтальной проекций цилиндра начинают с изображения основания цилиндра, т. е. двух проекций окружности (см. рисунок 135, б). Так как окружность расположена на плоскости Н , то она проецируется на эту плоскость без искажения. Фронтальная проекция окружности представляет собой отрезок горизонтальной прямой линии, равный диаметру окружности основания.

После построения основания на фронтальной проекции проводят две очерковые образующие (крайние образующие) и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, который является фронтальной проекцией верхнего основания цилиндра (рисунок 135, в).

Определение недостающих проекций точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном случае затруднений не вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рисунок 137, а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек A"" и B"" вертикальные линии связи до их пересечения с окружностью в искомых точках A" и B".

Профильные проекции точек А и В строят также при помощи вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчивают, как показано на рисунок 137, б.

В изометрии точки А и В строят по их координатам. Например, для построения точки В от начала координат О по оси x откладывают координату ∆x , а затем через ее конец проводят прямую, параллельную оси у , до пересечения с контуром основания в точке 2 . Из этой точки параллельно оси z проводят прямую, на которой откладывают координату Z B , точки В .

Рисунок 137

Прямой круговой конус . Прямым круговым конусом (рисунок 138) называют тело, ограниченное конической поверхностью вращения и кругом, расположенным в плоскости, перпендикулярной к оси конуса.Коническая поверхность получается при вращении прямолинейной образующейSA (рисунок 138, а), проходящей через неподвижную точкуS на оси вращенияi и составляющей с этой осью некоторый постоянный угол. ТочкаS называетсявершиной конуса , а коническая поверхность - боковой поверхностью конуса. Размер прямого кругового конуса характеризуют диаметр его основанияD K и высотаН .

Рисунок 138

Прямой круговой конус можно также рассматривать как тело, полученное при вращении прямоугольного треугольника SAB вокруг его катета SB (рисунок 139). При таком вращении гипотенуза описывает коническую поверхность, а катет АВ - круг, т. е. основание конуса.

Рисунок 139

Построение проекций конуса.

Последовательность построения двух проекций конуса показана на рисунке 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основания - окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рисунок 138, б). На фронтальной проекции из середины основания восставляют перпендикуляр, и на нем откладывают высоту конуса (рисунок 138, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и получают фронтальную проекцию конуса.

Построение точек на поверхности конуса

Если на поверхности конуса задана одна проекция точки А (например, фронтальная проекция на рисунке 140), то две другие проекции этой точки определяют с помощью вспомогательных линий - образующей, расположенной на поверхности конуса и проведенной через точку А , или окружности, расположенной в плоскости, параллельной основанию конуса.

Рисунок 140

В первом случае (рисунок 140, а) через точку A проводят фронтальную проекцию 1""S"" вспомогательной образующей. Пользуясь вертикальной линией связи, проведенной из точки 1 , расположенной на фронтальной проекции окружности основания, находят горизонтальную проекцию 1" этой образующей, на которой при помощи линии связи, проходящей через A" , находят искомую точку A .

Во втором случае (рисунок 140, б) вспомогательной линией, проходящей через точку А , будет окружность, расположенная на конической поверхности и параллельная плоскости Н - параллель. Фронтальная проекция этой окружности изображается в виде отрезка 1""1"" горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция A" точки А находится на пересечении линии связи, опущенной из точки A" , с горизонтальной проекцией вспомогательной окружности.

Если заданная фронтальная проекция 1"" точки 1 расположена на контурной (очерковой) образующей, то горизонтальная проекция точки находится без вспомогательных линий.

В изометрической проекции точку А , находящуюся на поверхности конуса, строят по трем координатам (см. рисунок 140, в): X , Y и Z А О по оси х отложена координата X Y z Z А А .

Шар. Шаром (рисунок 141) называют тело, полученное при вращении полукругаABC (образующая) вокруг его диаметраАС (ось вращения), а поверхность, которую при этом описывает дугаABC , называется шаровой или сферической. Шар относится к телам, ограниченным только поверхностью вращения.

Рисунок 141

Шаровая (сферическая) поверхность является геометрическим местом точек, равноудаленных от одной точки О , называемой центром шара . Если шар рассечь горизонтальными плоскостями, то в сечении получатся окружности – параллели . Наибольшая из параллелей имеет диаметр равный диаметру шара. Такая окружность называется экватором . Окружности же, получаемые в результате сечений шара плоскостями, проходящими через его ось вращения, называются меридианами .

Построение проекций шара и точек на его поверхности

Проекции шара приведены на рисунке 142, а. Горизонтальная и фронтальная проекции - окружности радиуса, равного радиусу сферы.

Рисунок 142

Если точка А расположена на сферической поверхности, то вспомогательная линия 1"" 2"" , проведенная через эту точку параллельно оси Ох (параллель), проецируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспомогательной окружности находят с помощью линии связи искомую горизонтальную проекцию A" точки А .

Величина диаметра вспомогательной окружности равна фронтальной проекции 1""2"" .

Аксонометрическое изображение сферы (шара) выполняется в виде окружности (рисунок 142 б), радиус которой геометрически определяется как расстояние от центра сферы до проекции экватора (эллипса) вдоль большей ее оси (перпендикулярной Oz ).

В аксонометрической проекции точку А , находящуюся на поверхности шара, строят по трем координатам: X А , Y А и Z А . Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата X А ; из конца ее параллельно оси у проведена прямая, на которой отложена координата Y А ; из конца отрезка, параллельно оси z проведена прямая, на которой отложена координата Z А . В результате построений получим искомую точку А .

Тор – тело (рисунок 143), образованное вращением окружности или ее дуги вокруг оси, расположенной в одной с ней плоскости но не проходящей через центр окружности или ее дуги.

Рисунок 143

Если ось вращения не пересекает образующую окружность, то тор называют кольцом (открытый тор) (рисунок 143, а). Если же ось вращения пересекает образующую окружность, то получается торовая поверхность бочкообразном формы (закрытый тор или пересекающийся тор) (рисунок 143, б). В последнем случае образующей торовой поверхности является дуга ABC окружности.

Наибольшую из окружностей, которые описывают точки образующей торовой поверхности, называют экватором , а наименьшую - горлом , или горловиной.

Построение проекций тора

Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентрических окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рисунок 145). Фронтальная проекция ограничивается справа и слева дугами полуокружностей диаметра образующей окружности.

На рисунке 144, а и б приведены два вида закрытого тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R , а во втором случае - больше. В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R , расположенных симметрично по отношению к фронтальной проекции оси вращения. Профильными проекциями тора будут окружности.

Рисунок 144

Построение точек на поверхности тора

В случае, когда точка А лежит на поверхности кругового кольца и дана одна ее проекция, для нахождения второй проекции этой точки применяется вспомогательная окружность, проходящая через данную точку А и расположенная на поверхности кольца в плоскости, перпендикулярной оси кольца (рисунок 145).

Если задана фронтальная проекция A"" точки А , лежащей на поверхности кольца, то для нахождения ее второй проекции (в данном случае - горизонтальной) через A" проводят фронтальную проекцию вспомогательной окружности - отрезок горизонтальной прямой линии 2""2"" . Затем строят горизонтальную проекцию 2"2" этой окружности и на ней, применяя линию связи, находят точку A" .

Если задана горизонтальная проекция B" точки B , расположенной на поверхности этого кольца, то для нахождения фронтальной проекции этой точки через 1" проводят горизонтальную проекцию вспомогательной окружности радиуса R 1 . Затем через левую и правую точки 1" и 1" этой окружности проводят вертикальные линии связи до пересечения с фронтальными проекциями очерковой образующей окружности радиуса R и получают точки 1"" и 1"" . Эти точки соединяют горизонтальной прямой, которая представляет собой фронтальную проекцию вспомогательной окружности (она будет видима). Проводя вертикальную линию связи из точки B" до пересечения с прямой 1""1"" получаем искомую точку B"" .

Такие же приемы построения применимы и для точек, находящихся на поверхности тора.

Рисунок 145

Построение аксонометрического изображения тора можно разделит на три этапа (рисунок 146). Сначала строится в виде эллипса проекция радиальной осевой линии (траектория движения центра образующей окружности). Затем определяем радиус сферы, касающейся тора по образующей (окружности). Для этого строим в виде меньшего эллипса проекцию фронтальной очерковой образующей тора. Радиус сферы определим как длину отрезка О 1 F от центра эллипса до точки на этом эллипсе, лежащей на большой оси эллипса (перпендикулярной Oy ). Далее строим большое количество окружностей радиусом R сферы с центрами на проекции радиальной осевой тора О 1 … О n (чем больше, тем точнее контур будущего тора). В завершение проводим линию контура тора как линию, касающуюся каждой окружности сферы.

Рисунок 146

В аксонометрической проекции точку А , находящуюся на поверхности тора, строят по трем координатам: X А , Y А и Z А . Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям.

Примеры тел вращения

  • Шар - образован полукругом, вращающимся вокруг диаметра разреза
  • Цилиндр - образован прямоугольником, вращающимся вокруг одной из сторон

За площадь боковой поверхности цилиндра принимается площадь его развертки: Sбок = 2πrh.

  • Конус - образован прямоугольным треугольником, вращающимся вокруг одного из катетов

За площадь боковой поверхности конуса принимается площадь ее развертки: Sбок = πrl Площадь полной поверхности конуса: Sкон = πr(l+ r)

При вращении контуров фигур возникает поверхность вращения (например, сфера , образованная окружностью), в то время как при вращении заполненных контуров возникают тела (как шар, образованный кругом).

Объём и площадь поверхности тел вращения

  • Первая теорема Гульдина-Паппа гласит:
  • Вторая теорема Гульдина-Паппа гласит:

Литература

А.В. Погорелов. «Геометрия. 10-11 класс» §21.Тела вращения. - 2011

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Тела вращения" в других словарях:

    деталь с закрытым уступом – тела вращения - Часть детали, поверхность которой ограничена с обеих сторон поверхностями вращения, имеющими больший диаметр. Наличие закрытых уступов не влияет на определение ступенчатости наружной поверхности. Проточки для выхода инструмента не считается… …

    оболочка, имеющая форму тела вращения - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN shell of revolution … Справочник технического переводчика

    тонкого тела теория Энциклопедия «Авиация»

    тонкого тела теория - Обтекание тонкого тела при отличном от нуля угле атаки. тонкого тела теория — теория пространственного безвихревого течения идеальной жидкости около тонких тел [тела, у которых поперечный размер l (толщина, размах) мал по сравнению с… … Энциклопедия «Авиация»

    Теория пространственного безвихревого течения идеальной жидкости около тонких тел (тела, у которых поперечный размер l (толщина, размах) мал по сравнению с продольным размером L: (τ) = l/LЭнциклопедия техники

    Угловая скорость (синяя стрелка) в одну единицу по часовой стрелке Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки Уг … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Движение тела в поле тяготения Земли с нач. скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), к рая зависит от скорости v движения. На… … Физическая энциклопедия

    Прямая, неподвижная относительно вращающегося вокруг неё твердого тела. Для твердого тела, имеющего неподвижную точку (например, для детского волчка), прямая, проходящая через эту точку, поворотом вокруг которой тело перемещается из данного… … Энциклопедический словарь

    Движение тела в поле тяготения Земли с начальной скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), которая зависит от скорости… … Большая советская энциклопедия

Книги

  • Комплект таблиц. Математика. Многогранники. Тела вращения. 11 таблиц + 64 карточки + методика , . Учебный альбом из 11 листов (формат 68 х 98 см): - Параллельное проектирование. - Изображение плоских фигур. - Поэтапное иллюстрирование доказательства теорем. - Взаимноерасположение прямых и…
  • Интегрирование уравнений равновесия упругого тела вращения при симметричном относительно его оси распределении объемных и поверхностных сил , Г.Д. Гродский. Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство`Известия академии наук СССР`). В…