Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

Начнём с того, что же, собственно, понимать под словом "множество". На интуитивном уровне под множеством понимают некую совокупность объектов, именуемых элементами множества . Например, можно говорить о множестве груш на столе, множестве букв в слове "множество" и так далее. Георг Кантор (немецкий математик, основатель современной теории множеств) писал, что под "множеством я понимаю вообще всё то многое, которое возможно мыслить как единое, т.е. такую совокупность определённых элементов, которая посредством одного закона может быть соединена в одно целое". Некоторое время понятие множества, введённое Кантором, полагалось довольно очевидным и не требующим дополнительных пояснений. Казалось, что появление работ Больцано, а затем и Кантора в конце 19 - начале 20 века, положит конец многим вопросам (например, окончательно разрешит апории Зенона, разрешит проблему бесконечности и т.д.) и станет началом новой математики. Гениальный немецкий математик Давид Гильберт отмечал, что "Никто не изгонит нас из рая, созданного Кантором".

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец "канторовскому раю". Одна из формулировок парадокса Рассела, известная под названием "парадокс брадобрея" звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, - а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей - вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали "наивной". Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая "аксиома выбора". Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

$$\{а, е, ё, и, о, у, ы, э, ю, я \} $$

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

$$\{9,10,11,12,13,14 \} $$

Множество может вообще не содержать ни одного элемента. В этом случае его именуют пустым множеством и обозначают как $\varnothing$.

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

$$A=\{0, 5, 6, -9 \},\; B=\{\Delta, +, -5, 0\}.$$

Есть и устоявшиеся обозначения определённых множеств. Например, множество натуральных чисел принято обозначать буквой $N$; множество целых чисел - буквой $Z$; множество рациональных чисел - буквой $Q$; множество всех действительных чисел - буквой $R$. Есть и иные устоявшиеся обозначения, но к ним мы станем обращаться по мере необходимости.

Множество, которое содержит конечное количество элементов, именуют конечным множеством . Если множество содержит бесконечное количество элементов, его называют бесконечным .

Например, указанное выше множество $A=\{0, 5, 6, -9 \}$ - конечное множество, ибо содержит 4 элемента (т.е. конечное число элементов). Множество натуральных чисел $N$ является бесконечным. Вообще говоря, мы не всегда можем сразу с уверенностью сказать, бесконечно некое множество или нет. Например, пусть $F$ - множество простых чисел.

Что такое простое число : показать\скрыть

Простыми числами именуют такие натуральные числа большие 1, которые делятся лишь на 1 или на самое себя. Например, 2, 3, 5, 7 и так далее. Для сравнения: число 12 не является простым числом, так как оно делится не только на 12 и 1, а ещё и на иные числа (например, на 3). Число 12 является составным.

Возникает вопрос: бесконечно множество $F$ или нет? Существует ли наибольшее простое число? Для ответа на этот вопрос понадобилась целая теорема, доказанная Эвклидом, о том, что множество простых чисел - бесконечно.

Под мощностью множества для конечных множеств понимают количество элементов данного множества. Мощность множества $A$ обозначается как $|A|$.

Например, так как конечное множество $A=\{0, 5, 6, -9 \}$ содержит 4 элемента, то мощность множества $A$ равна 4, т.е. $|A|=4$.

Если нам известно, что некий объект $a$ принадлежит множеству $A$, то записывают это так: $a\in A$. Например, для вышеуказанного множества $A$ можно записать, что $5\in A$, $-9\in A$. Если же объект $a$ не принадлежит множеству $A$, то обозначается это следующим образом: $a\notin A$. Например, $19\notin A$. Кстати, сказать, элементами множеств могут быть и иные множества, например:

$$ M=\{-9,1,0, \{ a, g\}, \varnothing \} $$

Элементами множества $M$ являются числа -9, 1, 0, а также множество $ \{ a,\; g\}$ и пустое множество $\varnothing$. Вообще, для упрощения восприятия множество можно представлять как портфель. Пустое множество - пустой портфель. Эта аналогия пригодится чуть далее.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

Множество $A$ называют подмножеством множества $B$, если все элементы множества $A$ являются также элементами множества $B$. Обозначение: $A\subseteq B$.

Например, рассмотрим множества $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$. Каждый элемент множества $K$ (т.е. -9 и 5) является также элементом множества $T$. Следовательно, множество $K$ есть подмножество множества $T$, т.е. $K\subseteq T$.

Так как все элементы любого множества $A$ принадлежат самому множеству $A$, то множество $A$ является подмножеством самого множества $A$. Пустое множество $\varnothing$ является подможеством любого множества. Т.е. для произвольного множества $A$ верно следующее:

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение - универсальное множество.

Универсальное множество (универсум) $U$ обладает тем свойством, что все иные множества, рассматриваемые в данной задаче, являются его подмножествами.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

$$ Vasilij=\{MTC, Life \} $$

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Множества $A$ и $B$ называются равными , если они состоят из одних и тех же элементов. Иными словами, если каждый элемент множества $A$ является также элементом множества $B$, и каждый элемент множества $B$ является также элементом множества $A$, то $A=B$.

Определение равенства множеств можно записать и по-иному: если $A\subseteq B$ и $B\subseteq A$, то $A=B$.

Рассмотрим пару множеств: первое будет $\{\Delta, k \}$, а второе - $\{k, \Delta\}$. Каждый элемент первого множества (т.е. $\Delta$ и $k$) является также элементом второго множества. Каждый элемент второго множества (т.е. $k$ и $\Delta$) является также элементом второго множества. Вывод: $\{\Delta, k \}=\{k, \Delta\}$. Как видите, порядок записи элементов в множестве роли не играет.

Рассмотрим ещё пару множеств: $X=\{k, \Delta, k, k,k \}$ и $Y=\{\Delta, k \}$. Каждый элемент множества $X$ является также элементом множества $Y$; каждый элемент множества $Y$ является также элементом множества $X$. Следовательно, $\{k, \Delta, k, k, k \}=\{\Delta, k \}$. С учётом подобных равенств в теории множеств принято одинаковые элементы не повторять в записи дважды. Например, множество цифр числа 1111111555559999 будет таким: $\{1,5,9\}$. Есть, конечно, исключения: так называемые мультимножества . В записи мультимножеств элементы могут повторяться, однако в классической теории множеств повторения элементов не допускаются.

Используя понятие равенства множеств, можно классифицировать подмножества.

Если $A\subseteq B$, при этом $A\neq B$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$.

Если же некое подмножество множества $A$ совпадает с самим множеством $A$, то это подмножество называют несобственным . Иными словами, множество $A$ является несобственным подмножеством самого множества $A$.

Например, для рассмотренных выше множеств $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$ имеем: $K\subseteq T$, при этом $K\neq T$. Следовательно, множество $K$ является собственным подмножеством множества $T$, что записывается как $K\subset T$. Можно сказать и так: множество $K$ строго включено в множество $T$. Запись $K\subset T$ более конкретна, нежели $K\subseteq T$. Дело в том, что записывая $K\subset T$ мы гарантируем, что $K\neq T$. В то время как запись $K\subseteq T$ не исключает случая равенства $K=T$.

Примечание относительно терминологии : показать\скрыть

Вообще говоря, тут есть некая путаница в терминологии. Приведённое выше определение несобственных множеств принято в американской и части отечественной литературы. Однако в другой части отечественной литературы есть несколько иная трактовка понятия несобственных множеств.

Если $A\subseteq B$, при этом $A\neq B$ и $A\neq \varnothing$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$. Множества $B$ и $\varnothing$ именуются несобственными подмножествми множества $B$.

Иными словами, пустое множество в такой трактовке исключается из собственных подмножеств и переходит в разряд несобственных. Выбор терминологии - дело вкуса.

Множество всех подмножеств некоего множества $A$ называют булеаном или степенью множества $A$. Обозначается булеан как $P(A)$ или $2^A$.

Пусть множество $A$ содержит $n$ элементов. Булеан множества $A$ содержит $2^n$ элементов, т.е.

$$ \left| P(A) \right|=2^{n},\;\; n=|A|. $$

Рассмотрим пару примеров на использование введённых выше понятий.

Пример №1

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

  1. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \} $;
  2. $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $;
  3. $\{-3,5, 9 \}\in \{-3, 9, 8, 5, 4, 6 \} $;
  4. $\varnothing \subseteq \varnothing$;
  5. $\varnothing=\{\varnothing \}$;
  6. $\varnothing \in \varnothing$;
  7. $A=\{9, -5, 8 \{7, 6 \} \};\; |A|=5$.
  1. Нам заданы два множества: $\{-3,5, 9 \}$ и $\{-3, 9, 8, 5, 4, 6 \}$. Каждый элемент первого множества является также элементом второго множества. Следовательно, первое множество есть подмножество второго, т.е. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. Утверждение первого пункта - верное.
  2. В первом пункте мы выяснили, что $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. При этом данные множества не равны между собой, т.е. $\{-3,5, 9 \}\neq \{-3, 9, 8, 5, 4, 6 \}$. Значит, множество $\{-3,5, 9 \}$ является собственным (в иной терминологии строгим) подмножеством множества $\{-3, 9, 8, 5, 4, 6 \}$. Этот факт записывается как $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $. Итак, утверждение второго пункта истинно.
  3. Множество $\{-3,5, 9 \}$ не является элементом множества $\{-3, 9, 8, 5, 4, 6 \}$. Утверждение третьего пункта ложно. Для сравнения: утверждение $\{-3,5, 9 \}\in \{9, 8, 5, 4, \{-3,5,9\}, 6 \}$ истинно.
  4. Пустое множество является подможеством любого множества. Поэтому утверждение $\varnothing \subseteq \varnothing$ истинно.
  5. Утверждение ложно. Множество $\varnothing$ не содержит элементов, а множество $\{\varnothing \}$ содержит один элемент, посему равенство $\varnothing=\{\varnothing \}$ неверно. Чтобы это было нагляднее, можно обратиться к той аналогии, что я описал выше. Множество - это портфель. Пустое множество $\varnothing$ - пустой портфель. Множество $\{\varnothing \}$ - портфель, внутри которого лежит пустой портфель. Естественно, что пустой портфель и непустой портфель, внутри которого нечто есть - разные портфели:)
  6. Пустое множество не содержит элементов. Ни единого. Поэтому утверждение $\varnothing \in \varnothing$ ложно. Для сравнения: утверждение $\varnothing\in\{\varnothing \}$ истинно.
  7. Множество $A$ содержит 4 элемента, а именно: 9, -5, 8 и $\{7, 6 \}$. Поэтому мощность множества $A$ равна 4, т.е. $|A|=4$. Следовательно, утверждение о том, что $|A|=5$ - ложно.

Ответ : Утверждения в пунктах №1, №2, №4 - истинны.

Пример №2

Записать булеан множества $A=\{-5,10,9\}$.

Множество $A$ содержит 3 элемента. Иными словами: мощность множества $A$ равна 3, $|A|=3$. Следовательно, множество $A$ имеет $2^3=8$ подмножеств, т.е. булеан множества $A$ будет состоять из восьми элементов. Перечислим все подмножества множества $A$. Напомню, что пустое множество $\varnothing$ является подмножеством любого множества. Итак, подмножества таковы:

$$ \varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} $$

Напомню, что подмножество $\{-5, 10, 9 \}$ является несобственным, так как совпадает с множеством $A$. Все остальные подмножества - собственные. Все записанные выше подмножества являются элементами булеана множества $A$. Итак:

$$ P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\} $$

Булеан найден, остаётся лишь записать ответ.

Ответ : $P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\}$.

Способы задания множеств.

Первый способ - это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$ \{1,2,3\} $$

Часто в литературе можно встретить обозначения такого характера: $T=\{0,2,4,6,8, 10, \ldots \}$. Здесь множество задаётся не перечислением элементов, как кажется на первый взгляд. Перечислить все чётные неотрицательные числа, которые и составляют множество $T$, невозможно, ибо этих чисел бесконечно много. Запись вида $T=\{0,2,4,6,8, 10, \ldots \}$ допускается только тогда, когда не вызывает разночтений.

Второй способ - задать множество с помощью так называемого характеристического условия (характеристического предиката) $P(x)$. В этом случае множество записывается в таком виде:

$$\{x| P(x)\}$$

Запись $\{x| P(x)\}$ читается так: "множество всех элементов $x$, для которых высказывание $P(x)$ истинно". Что именно значит словосочетание "характеристическое условие" проще пояснить на примере. Рассмотрим такое высказывание:

$$P(x)="x\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Подставим в это высказывание вместо $x$ число 27. Мы получим:

$$P(27)="27\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это истинное высказывание, так как 27 действительно является натуральным числом, последняя цифра которого равна 7. Подставим в это высказывание число $\frac{2}{5}$:

$$P\left(\frac{2}{5}\right)="\frac{2}{5}\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это высказывание ложно, так как $\frac{2}{5}$ не является натуральным числом. Итак, для некоторых объектов $x$ высказывание $P(x)$ может быть ложно, для некоторых - истинно (а для некоторых вообще не определено). Нас будут интересовать лишь те объекты, для которых высказывание $P(x)$ будет истинно. Именно эти объекты и образуют множество, заданное с помощью характеристического условия $P(x)$ (см. пример №3).

Третий способ - задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

Пример №3

Записать множество $A=\{x| x\in Z \wedge x^2 < 10\}$ перечислением элементов.

Множество $A$ задано с помощью характеристического условия. Характеристическое условие в данном случае выражено записью "$x\in Z \wedge x^2 < 10$" (знак "$\wedge$" означает "и"). Расшифровывается эта запись так: "$x$ - целое число, и $x^2 < 10$". Иными словами, в множество $A$ должны входить лишь целые числа, квадрат которых меньше 10. Таких чисел всего 7, т.е.

$$ A=\{0,-1,1,-2,2,-3,3\} $$

Множество $A$ теперь задано с помощью перечисления элементов.

Ответ : $A=\{0,-1,1,-2,2,-3,3\}$.

Пример №4

Описать элементы множества $M$, которое задано такой порождающей процедурой:

  1. $3\in M$;
  2. Если элемент $x\in M$, то $3x\in M$.
  3. Множество $M$ - является подмножеством любого множества $A$, удовлетворяющего условиям №1 и №2.

Давайте пока оставим в покое условие №3 и посмотрим, какие элементы входят в множество $M$. Число 3 туда входит согласно первому пункту. Так как $3\in M$, то согласно пункту №2 имеем: $3\cdot 3\in M$, т.е. $9\in M$. Так как $9\in M$, то согласно пункту №2 получим: $3\cdot 9\in M$, т.е. $27\in M$. Так как $27\in M$, то по тому же пункту №2 имеем: $81\in M$. Короче говоря, построенное множество 3, 9, 27, 81 и так далее - это натуральные степени числа 3.

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Итак, кажется, что искомое множество задано. И выглядит оно так: $\{3,9,27,81,\ldots \}$. Однако действительно ли условия №1 и №2 определяют только это множество?

Рассмотрим множество всех натуральных чисел, т.е. $N$. Число 3 - натуральное, посему $3\in N$. Вывод: множество $N$ удовлетворяет пункту №1. Далее, для любого натурального числа $x$ множество $N$ содержит также и число $3x$. Например, 5 и 15, 7 и 21, 13 и 39 и так далее. Значит, множество $N$ удовлетворяет условию №2. И, кстати сказать, не только множество $N$ удовлетворяет условиям №1 и №2. Например, множество всех нечётных натуральных чисел $N_1=\{1,3,5,7,9,11, \ldots\}$ тоже подходит под условия пунктов №1 и №2. Как же указать, что нам нужно именно множество $\{3,9,27,81,\ldots \}$?

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

Множества. Операции над множествами.
Отображение множеств. Мощность множества

Приветствую вас на первом уроке по высшей алгебре, который появился… в канун пятилетия сайта, после того, как я уже создал более 150 статей по математике, и мои материалы начали оформляться в завершённый курс. Впрочем, буду надеяться, что не опоздал – ведь многие студенты начинают вникать в лекции только к государственным экзаменам =)

Вузовский курс вышмата традиционно зиждется на трёх китах:

– математическом анализе (пределы , производные и т.д.)

– и, наконец, сезон 2015/16 учебного года открывается уроками Алгебра для чайников , Элементы математической логики , на которых мы разберём основы раздела, а также познакомимся с базовыми математическими понятиями и распространёнными обозначениями. Надо сказать, что в других статьях я не злоупотребляю «закорючками» , однако то лишь стиль, и, конечно же, их нужно узнавать в любом состоянии =). Вновь прибывшим читателям сообщаю, что мои уроки ориентированы на практику, и нижеследующий материал будет представлен именно в этом ключе. За более полной и академичной информацией, пожалуйста, обращайтесь к учебной литературе. Поехали:

Множество. Примеры множеств

Множество – это фундаментальное понятие не только математики, но и всего окружающего мира. Возьмите прямо сейчас в руку любой предмет. Вот вам и множество, состоящее из одного элемента.

В широком смысле, множество – это совокупность объектов (элементов), которые понимаются как единое целое (по тем или иным признакам, критериям или обстоятельствам). Причём, это не только материальные объекты, но и буквы, цифры, теоремы, мысли, эмоции и т.д.

Обычно множества обозначаются большими латинскими буквами (как вариант, с подстрочными индексами: и т.п.) , а его элементы записываются в фигурных скобках, например:

– множество букв русского алфавита;
– множество натуральных чисел;

ну что же, пришла пора немного познакомиться:
– множество студентов в 1-м ряду

… я рад видеть ваши серьёзные и сосредоточенные лица =)

Множества и являются конечными (состоящими из конечного числа элементов), а множество – это пример бесконечного множества. Кроме того, в теории и на практике рассматривается так называемое пустое множество :

– множество, в котором нет ни одного элемента.

Пример вам хорошо известен – множество на экзамене частенько бывает пусто =)

Принадлежность элемента множеству записывается значком , например:

– буква «бэ» принадлежит множеству букв русского алфавита;
– буква «бета» не принадлежит множеству букв русского алфавита;
– число 5 принадлежит множеству натуральных чисел;
– а вот число 5,5 – уже нет;
– Вольдемар не сидит в первом ряду (и тем более, не принадлежит множеству или =)).

В абстрактной и не очень алгебре элементы множества обозначают маленькими латинскими буквами и, соответственно, факт принадлежности оформляется в следующем стиле:

– элемент принадлежит множеству .

Вышеприведённые множества записаны прямым перечислением элементов, но это не единственный способ. Многие множества удобно определять с помощью некоторого признака (ов) , который присущ всем его элементам . Например:

– множество всех натуральных чисел, меньших ста.

Запомните : длинная вертикальная палка выражает словесный оборот «которые», «таких, что». Довольно часто вместо неё используется двоеточие: – давайте прочитаем запись более формально: «множество элементов , принадлежащих множеству натуральных чисел, таких, что » . Молодцы!

Данное множество можно записать и прямым перечислением:

Ещё примеры:
– и если и студентов в 1-м ряду достаточно много, то такая запись намного удобнее, нежели их прямое перечисление.

– множество чисел, принадлежащих отрезку . Обратите внимание, что здесь подразумевается множество действительных чисел (о них позже) , которые перечислить через запятую уже невозможно.

Следует отметить, что элементы множества не обязаны быть «однородными» или логически взаимосвязанными. Возьмите большой пакет и начните наобум складывать в него различные предметы. В этом нет никакой закономерности, но, тем не менее, речь идёт о множестве предметов. Образно говоря, множество – это и есть обособленный «пакет», в котором «волею судьбы» оказалась некоторая совокупность объектов.

Подмножества

Практически всё понятно из самого названия: множество является подмножеством множества , если каждый элемент множества принадлежит множеству . Иными словами, множество содержится во множестве :

Значок называют значком включения .

Вернёмся к примеру, в котором – это множество букв русского алфавита. Обозначим через – множество его гласных букв. Тогда:

Также можно выделить подмножество согласных букв и вообще – произвольное подмножество, состоящее из любого количества случайно (или неслучайно) взятых кириллических букв. В частности, любая буква кириллицы является подмножеством множества .

Отношения между подмножествами удобно изображать с помощью условной геометрической схемы, которая называется кругами Эйлера .

Пусть – множество студентов в 1-м ряду, – множество студентов группы, – множество студентов университета. Тогда отношение включений можно изобразить следующим образом:

Множество студентов другого ВУЗа следует изобразить кругом, который не пересекает внешний круг; множество студентов страны – кругом, который содержит в себе оба этих круга, и т.д.

Типичный пример включений мы наблюдаем при рассмотрении числовых множеств. Повторим школьный материал, который важно держать на заметке и при изучении высшей математики:

Числовые множества

Как известно, исторически первыми появились натуральные числа, предназначенные для подсчёта материальных объектов (людей, кур, овец, монет и т.д.). Это множество уже встретилось в статье, единственное, мы сейчас чуть-чуть модифицируем его обозначение. Дело в том, что числовые множества принято обозначать жирными, стилизованными или утолщёнными буквами. Мне удобнее использовать жирный шрифт:

Иногда к множеству натуральных чисел относят ноль.

Если к множеству присоединить те же числа с противоположным знаком и ноль, то получится множество целых чисел :

Рационализаторы и лентяи записывают его элементы со значками «плюс минус» :))

Совершенно понятно, что множество натуральных чисел является подмножеством множества целых чисел:
– поскольку каждый элемент множества принадлежит множеству . Таким образом, любое натуральное число можно смело назвать и целым числом.

Название множества тоже «говорящее»: целые числа – это значит, никаких дробей.

И, коль скоро, целые, то сразу же вспомним важные признаки их делимости на 2, 3, 4, 5 и 10, которые будут требоваться в практических вычислениях чуть ли не каждый день:

Целое число делится на 2 без остатка , если оно заканчивается на 0, 2, 4, 6 или 8 (т.е. любой чётной цифрой) . Например, числа:
400, -1502, -24, 66996, 818 – делятся на 2 без остатка.

И давайте тут же разберём «родственный» признак: целое число делится на 4 , если число, составленное из двух его последних цифр (в порядке их следования) делится на 4.

400 – делится на 4 (т.к. 00 (ноль) делится на 4) ;
-1502 – не делится на 4 (т.к. 02 (двойка) не делится на 4) ;
-24, понятно, делится на 4;
66996 – делится на 4 (т.к. 96 делится на 4) ;
818 – не делится на 4 (т.к. 18 не делится на 4) .

Самостоятельно проведите несложное обоснование данного факта.

С делимость на 3 чуть сложнее : целое число делится на 3 без остатка, если сумма входящих в него цифр делится на 3.

Проверим, делится ли на 3 число 27901. Для этого просуммируем его цифры:
2 + 7 + 9 + 0 + 1 = 19 – не делится на 3
Вывод: 27901 не делится на 3.

Просуммируем цифры числа -825432:
8 + 2 + 5 + 4 + 3 + 2 = 24 – делится на 3
Вывод: число -825432 делится на 3

Целое число делится на 5 , если оно заканчивается пятёркой либо нулём:
775, -2390 – делятся на 5

Целое число делится на 10 , если оно заканчивается на ноль:
798400 – делится на 10 (и, очевидно, на 100) . Ну и, наверное, все помнят – для того, чтобы разделить на 10, нужно просто убрать один ноль: 79840

Также существуют признаки делимости на 6, 8, 9, 11 и т.д., но практического толку от них практически никакого =)

Следует отметить, что перечисленные признаки (казалось бы, такие простые) строго доказываются в теории чисел . Этот раздел алгебры вообще достаточно интересен, однако его теоремы… прямо современная китайская казнь =) А Вольдемару за последней партой и того хватило…, но ничего страшного, скоро мы займёмся живительными физическими упражнениями =)

Следующим числовым множеством идёт множество рациональных чисел :
– то есть, любое рациональное число представимо в виде дроби с целым числителем и натуральным знаменателем .

Очевидно, что множество целых чисел является подмножеством множества рациональных чисел:

И в самом деле – ведь любое целое число можно представить в виде рациональной дроби , например: и т.д. Таким образом, целое число можно совершенно законно назвать и рациональным числом.

Характерным «опознавательным» признаком рационального числа является то обстоятельство, что при делении числителя на знаменатель получается либо
– целое число,

либо
конечная десятичная дробь,

либо
– бесконечная периодическая десятичная дробь (повтор может начаться не сразу) .

Полюбуйтесь делением и постарайтесь выполнять это действие как можно реже! В организационной статье Высшая математика для чайников и на других уроках я неоднократно повторял, повторяю, и буду повторять эту мантру:

В высшей математике все действия стремимся выполнять в обыкновенных (правильных и неправильных) дробях

Согласитесь, что иметь дело с дробью значительно удобнее, чем с десятичным числом 0,375 (не говоря уже о бесконечных дробях) .

Едем дальше. Помимо рациональных существует множество иррациональных чисел, каждое из которых представимо в виде бесконечной НЕпериодической десятичной дроби. Иными словами, в «бесконечных хвостах» иррациональных чисел нет никакой закономерности:
(«год рождения Льва Толстого» дважды)
и т.д.

О знаменитых константах «пи» и «е» информации предостаточно, поэтому на них я не останавливаюсь.

Объединение рациональных и иррациональных чисел образует множество действительных (вещественных) чисел :

– значок объединения множеств.

Геометрическая интерпретация множества вам хорошо знакома – это числовая прямая:


Каждому действительному числу соответствует определённая точка числовой прямой, и наоборот – каждой точке числовой прямой обязательно соответствует некоторое действительное число. По существу, сейчас я сформулировал свойство непрерывности действительных чисел, которое хоть и кажется очевидным, но строго доказывается в курсе математического анализа.

Числовую прямую также обозначают бесконечным интервалом , а запись или эквивалентная ей запись символизирует тот факт, что принадлежит множеству действительных чисел (или попросту «икс» – действительное число) .

С вложениями всё прозрачно: множество рациональных чисел – это подмножество множества действительных чисел:
, таким образом, любое рациональное число можно смело назвать и действительным числом.

Множество иррациональных чисел – это тоже подмножество действительных чисел:

При этом подмножества и не пересекаются – то есть ни одно иррациональное число невозможно представить в виде рациональной дроби.

Существуют ли какие-нибудь другие числовые системы? Существуют! Это, например, комплексные числа , с которыми я рекомендую ознакомиться буквально в ближайшие дни или даже часы.

Ну а пока мы переходим к изучению операций над множествами, дух которых уже материализовался в конце этого параграфа:

Действия над множествами. Диаграммы Венна

Диаграммы Венна (по аналогии с кругами Эйлера) – это схематическое изображение действий с множествами. Опять же предупреждаю, что я рассмотрю не все операции:

1) Пересечение И и обозначается значком

Пересечением множеств и называется множество , каждый элемент которого принадлежит и множеству , и множеству . Грубо говоря, пересечение – это общая часть множеств:

Так, например, для множеств :

Если у множеств нет одинаковых элементов, то их пересечение пусто. Такой пример нам только что встретился при рассмотрении числовых множеств:

Множества рациональных и иррациональных чисел можно схематически изобразить двумя непересекающимися кругами.

Операция пересечения применима и для бОльшего количества множеств, в частности в Википедии есть хороший пример пересечения множеств букв трёх алфавитов .

2) Объединение множеств характеризуется логической связкой ИЛИ и обозначается значком

Объединением множеств и называется множество , каждый элемент которого принадлежит множеству или множеству :

Запишем объединение множеств :
– грубо говоря, тут нужно перечислить все элементы множеств и , причём одинаковые элементы (в данном случае единица на пересечении множеств) следует указать один раз.

Но множества, разумеется, могут и не пересекаться, как это имеет место быть с рациональными и иррациональными числами:

В этом случае можно изобразить два непересекающихся заштрихованных круга.

Операция объединения применима и для бОльшего количества множеств, например, если , то:

При этом числа вовсе не обязательно располагать в порядке возрастания (это я сделал исключительно из эстетических соображений) . Не мудрствуя лукаво, результат можно записать и так:

3) Разностью и не принадлежит множеству :

Разность читаются следующим образом: «а без бэ». И рассуждать можно точно так же: рассмотрим множества . Чтобы записать разность , нужно из множества «выбросить» все элементы, которые есть во множестве :

Пример с числовыми множествами:
– здесь из множества целых чисел исключены все натуральные, да и сама запись так и читается: «множество целых чисел без множества натуральных».

Зеркально: разностью множеств и называют множество , каждый элемент которого принадлежит множеству и не принадлежит множеству :

Для тех же множеств
– из множества «выброшено» то, что есть во множестве .

А вот эта разность оказывается пуста: . И в самом деле – если из множества натуральных чисел исключить целые числа, то, собственно, ничего и не останется:)

Кроме того, иногда рассматривают симметрическую разность , которая объединяет оба «полумесяца»:
– иными словами, это «всё, кроме пересечения множеств».

4) Декартовым (прямым) произведением множеств и называется множество всех упорядоченных пар , в которых элемент , а элемент

Запишем декартово произведение множеств :
– перечисление пар удобно осуществлять по следующему алгоритму: «сначала к 1-му элементу множества последовательно присоединяем каждый элемент множества , затем ко 2-му элементу множества присоединяем каждый элемент множества , затем к 3-му элементу множества присоединяем каждый элемент множества »:

Зеркально: декартовым произведением множеств и называется множество всех упорядоченных пар , в которых . В нашем примере:
– здесь схема записи аналогична: сначала к «минус единице» последовательно присоединяем все элементы множества , затем к «дэ» – те же самые элементы:

Но это чисто для удобства – и в том, и в другом случае пары можно перечислить в каком угодно порядке – здесь важно записать все возможные пары.

А теперь гвоздь программы: декартово произведение – это есть не что иное, как множество точек нашей родной декартовой системы координат .

Задание для самостоятельного закрепления материала:

Выполнить операции , если:

Множество удобно расписать перечислением его элементов.

И пунктик с промежутками действительных чисел:

Напоминаю, что квадратная скобка означает включение числа в промежуток, а круглая – его невключение , то есть «минус единица» принадлежит множеству , а «тройка» не принадлежит множеству . Постарайтесь разобраться, что представляет собой декартово произведение данных множеств. Если возникнут затруднения, выполните чертёж;)

Краткое решение задачи в конце урока.

Отображение множеств

Отображение множества во множество – это правило , по которому каждому элементу множества ставится в соответствие элемент (или элементы) множества . В том случае если в соответствие ставится единственный элемент, то данное правило называется однозначно определённой функцией или просто функцией .

Функцию, как многие знают, чаще всего обозначают буквой – она ставит в соответствие каждому элементу единственное значение , принадлежащее множеству .

Ну а сейчас я снова побеспокою множество студентов 1-го ряда и предложу им 6 тем для рефератов (множество ):

Установленное (добровольно или принудительно =)) правило ставит в соответствие каждому студенту множества единственную тему реферата множества .

…а вы, наверное, и представить себе не могли, что сыграете роль аргумента функции =) =)

Элементы множества образуют область определения функции (обозначается через ), а элементы множества – область значений функции (обозначается через ).

Построенное отображение множеств имеет очень важную характеристику: оно является взаимно-однозначным или биективным (биекцией). В данном примере это означает, что каждому студенту поставлена в соответствие одна уникальная тема реферата, и обратно – за каждой темой реферата закреплён один и только один студент.

Однако не следует думать, что всякое отображение биективно. Если на 1-й ряд (к множеству ) добавить 7-го студента, то взаимно-однозначное соответствие пропадёт – либо один из студентов останется без темы (отображения не будет вообще) , либо какая-то тема достанется сразу двум студентам. Обратная ситуация: если к множеству добавить седьмую тему, то взаимнооднозначность отображения тоже будет утрачена – одна из тем останется невостребованной.

Уважаемые студенты на 1-м ряду, не расстраивайтесь – остальные 20 человек после пар пойдут прибирать территорию университета от осенней листвы. Завхоз выдаст двадцать голиков, после чего будет установлено взаимно-однозначное соответствие между основной частью группы и мётлами…, а Вольдемар ещё и в магазин сбегать успеет =)).области определения соответствует свой уникальный «игрек», и наоборот – по любому значению «игрек» мы сможем однозначно восстановить «икс». Таким образом, это биективная функция.

! На всякий случай ликвидирую возможное недопонимание: моя постоянная оговорка об области определения не случайна! Функция может быть определена далеко не при всех «икс», и, кроме того, может быть взаимно-однозначной и в этом случае. Типичный пример:

А вот у квадратичной функции не наблюдается ничего подобного, во-первых:
– то есть, различные значения «икс» отобразились в одно и то же значение «игрек»; и во-вторых: если кто-то вычислил значение функции и сообщил нам, что , то не понятно – этот «игрек» получен при или при ? Что и говорить, взаимной однозначностью здесь даже не пахнет.

Задание 2 : просмотреть графики основных элементарных функций и выписать на листок биективные функции. Список для сверки в конце этого урока.

Мощность множества

Интуиция подсказывает, что термин характеризует размер множества, а именно количество его элементов. И интуиция нас не обманывает!

Мощность пустого множества равна нулю.

Мощность множества равна шести.

Мощность множества букв русского алфавита равна тридцати трём.

И вообще – мощность любого конечного множества равно количеству элементов данного множества.

…возможно, не все до конца понимают, что такое конечное множество – если начать пересчитывать элементы этого множества, то рано или поздно счёт завершится. Что называется, и китайцы когда-нибудь закончатся.

Само собой, множества можно сравнивать по мощности и их равенство в этом смысле называется равномощностью . Равномощность определяется следующим образом:

Два множества являются равномощными, если между ними можно установить взаимно-однозначное соответствие .

Множество студентов равномощно множеству тем рефератов, множество букв русского алфавита равномощно любому множеству из 33 элементов и т.д. Заметьте, что именно любому множеству из 33 элементов – в данном случае имеет значение лишь их количество. Буквы русского алфавита можно сопоставить не только с множеством номеров
1, 2, 3, …, 32, 33, но и вообще со стадом в 33 коровы.

Гораздо более интересно обстоят дела с бесконечными множествами. Бесконечности тоже бывают разными! ...зелёными и красными Самые «маленькие» бесконечные множества – это счётные множества. Если совсем просто, элементы такого множества можно пронумеровать. Эталонный пример – это множество натуральных чисел . Да – оно бесконечно, однако у каждого его элемента в ПРИНЦИПЕ есть номер.

Примеров очень много. В частности, счётным является множество всех чётных натуральных чисел . Как это доказать? Нужно установить его взаимно-однозначное соответствие с множеством натуральных чисел или попросту пронумеровывать элементы:

Взаимно-однозначное соответствие установлено, следовательно, множества равномощны и множество счётно. Парадоксально, но с точки зрения мощности – чётных натуральных чисел столько же, сколько и натуральных!

Множество целых чисел тоже счётно. Его элементы можно занумеровать, например, так:

Более того, счётно и множество рациональных чисел . Поскольку числитель – это целое число (а их, как только что показано, можно пронумеровать) , а знаменатель – натуральное число, то рано или поздно мы «доберёмся» до любой рациональной дроби и присвоим ей номер.

А вот множество действительных чисел уже несчётно , т.е. его элементы пронумеровать невозможно. Данный факт хоть и очевиден, однако строго доказывается в теории множеств. Мощность множества действительных чисел также называют континуумом , и по сравнению со счётными множествами это «более бесконечное» множество.

Поскольку между множеством и числовой прямой существует взаимно-однозначное соответствие (см. выше) , то множество точек числовой прямой тоже несчётно . И более того, что на километровом, что на миллиметровом отрезке – точек столько же! Классический пример:


Поворачивая луч против часовой стрелки до его совмещения с лучом мы установим взаимно-однозначное соответствие между точками синих отрезков. Таким образом, на отрезке столько же точек, сколько и на отрезке и !

Данный парадокс, видимо, связан с загадкой бесконечности… но мы сейчас не будем забивать голову проблемами мироздания, ибо на очереди

Задание 2 Взаимно-однозначные функции на иллюстрациях урока


Решение некоторых математических задач заставляет находить пересечение и объединение числовых множеств . Мы уже познакомились с принятыми обозначениями числовых множеств , а в этой статье мы тщательно и на примерах разберемся с нахождением пересечения и объединения числовых множеств. Эти навыки пригодятся, в частности, в процессе решения неравенств с одной переменной и их систем.

Навигация по странице.

Простейшие случаи

Под простейшими случаями мы будем понимать нахождение пересечения и объединения числовых множеств, являющихся набором отдельных чисел. В этих случаях достаточно использовать определения пересечения и объединения множеств .

Напомним, что

Определение.

объединением двух множеств является множество, каждый элемент которого является элементом какого-либо из исходных множеств, а пересечением множеств называется множество, состоящее из всех общих элементов исходных множеств.

Из данных определений несложно получить следующие правила нахождения пересечения и объединения множеств:

  • Для того чтобы составить объединение двух числовых множеств, содержащих конечное число элементов, нужно записать все элементы одного множества и к ним дописать недостающие элементы из второго.
  • Для того чтобы составить пересечение двух числовых множеств, надо последовательно брать элементы первого множества и проверять, принадлежат ли они второму множеству, те из них, которые принадлежат, и будут составлять пересечение.

Действительно, полученное по первому правилу множество будет состоять из всех элементов, принадлежащих хотя бы одному из исходных множеств, поэтому будет объединением этих множеств по определению. А множество, составленное по второму правилу, будет содержать все общие элементы исходных множеств, то есть, будет пересечением исходных множеств.

Рассмотрим на конкретных примерах применение озвученных правил для нахождения пересечения и объединения множеств.

Например, пусть нужно найти объединение числовых множеств A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} . Записываем все элементы, например, множества A , имеем 3 , 5 , 7 , 12 , и к ним добавляем недостающие элементы множества B , то есть, 2 , 8 , 11 и 13 , в результате имеем числовое множество {3, 5, 7, 12, 2, 8, 11, 13} . Не помешает упорядочить элементы полученного множества, в итоге получаем искомое объединение: A∪B={2, 3, 5, 7, 8, 11, 12, 13} .

Теперь найдем пересечение двух числовых множеств из предыдущего примера A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} . Согласно правилу, будем последовательно перебирать элементы первого множества A и проверять, входят ли они во множество B . Берем первый элемент 3 , он не принадлежит множеству B , следовательно, он не будет и элементом искомого пересечения. Берем второй элемент множества A , это число 5 . Оно принадлежит множеству B , поэтому принадлежит и пересечению множеств A и B . Так найден первый элемент искомого пересечения – число 5 . Переходим к третьему элементу множества A , это число 7 . Оно не принадлежит B , значит, не принадлежит и пересечению. Наконец, остался последний элемент множества A – число 12 . Оно принадлежит множеству B , следовательно, оно является и элементом пересечения. Итак, пересечение множеств A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} – это есть множество, состоящее из двух элементов 5 и 12 , то есть, A∩B={5, 12} .

Как Вы заметили, выше мы говорили о нахождении пересечения и объединения двух числовых множеств. Что же касается пересечения и объединения трех и большего числа множеств, то его нахождение можно свести к последовательному нахождению пересечения и объединения двух множеств. Например, чтобы найти пересечение трех множеств A , B и D можно сначала найти пересечение A и B , после чего найти пересечение полученного результата с множеством D . А теперь конкретно: возьмем числовые множества A={3, 9, 4, 3, 5, 21} , B={2, 7, 9, 21} и D={7, 9, 1, 3} и найдем их пересечение. Имеем A∩B={9, 21} , а пересечение полученного множества с множеством D есть {9} . Таким образом, A∩B∩D={9} .

Однако на практике для нахождения пересечения трех, четырех и т.д. простейших числовых множеств, состоящих из конечного числа отдельных чисел, удобно использовать правила, схожие с указанными выше правилами.

Так, чтобы получить объединение трех и большего числа множеств указанного типа, надо к числам первого числового множества добавить недостающие числа второго, к записанным числам добавляем недостающие числа третьего множества и так далее. Чтобы пояснить этот момент возьмем числовые множества A={1, 2} , B={2, 3} и D={1, 3, 4, 5} . К элементам 1 и 2 числового множества A добавляем недостающее число 3 множества B , получаем 1 , 2 , 3 , и к этим числам добавляем недостающие числа 4 и 5 множества D , в итоге получаем нужное нам объединение трех множеств: A∪B∪C={1, 2, 3, 4, 5} .

Что же касается нахождения пересечения трех, четырех и т.д. числовых множеств, состоящих из конечного числа отдельных чисел, нужно последовательно перебрать числа первого множества и проверять, принадлежит ли проверяемое число каждому из остальных множеств. Если да, то это число является элементом пересечения, если нет – то не является. Здесь лишь заметим, что целесообразно в качестве первого брать множество с наименьшим числом элементов. В качестве примера возьмем четыре числовых множества A={3, 1, 7, 12, 5, 2} , B={1, 0, 2, 12} , D={7, 11, 2, 1, 6} , E={1, 7, 15, 8, 2, 6} и найдем их пересечение. Очевидно, множество B содержит меньше всего элементов, поэтому для нахождения пересечения исходных четырех множеств будем брать элементы множестваB и проверять, входят ли они в остальные множества. Итак, берем 1 , это число является элементами и множества A , и D и E , так что это первый элемент искомого пересечения. Берем второй элемент множества B – это нуль. Это число не является элементом множества A , поэтому не будет является и элементом пересечения. Проверяем третий элемент множества B – число 2 . Это число является элементом всех остальных множеств, поэтому, является вторим найденным элементом пересечения. Наконец, остается четвертый элемент множества B . Это число 12 , оно не является элементом множества D , поэтому, не является и элементом искомого пересечения. В итоге имеем A∩B∩D∩E={1, 2} .

Координатная прямая и числовые промежутки как объединение их частей

В нашем примере имеем записи

И

для пересечения и объединения числовых множеств соответственно.

Дальше изображают еще одну координатную прямую, ее удобно расположить под уже имеющимися. На ней будет изображаться искомое пересечение или объединение. На этой координатной прямой отмечают все граничные точки исходных числовых множеств. При этом эти точки сначала отмечают черточками, позже, когда будет выяснен характер точек с этими координатами, черточки будут заменены выколотыми или невыколотыми точками. В нашем случае это точки с координатами −3 и 7 .
Имеем

и

Точки, изображенные на нижней координатной прямой на предыдущем шаге алгоритма, позволяют рассматривать координатную прямую как набор числовых промежутков и точек, о чем мы говорили в . В нашем случае координатную прямую рассматриваем как набор следующих пяти числовых множеств: (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) .

И остается лишь по очереди проверить вхождение каждого из записанных множеств в искомое пересечение или объединение. Все сделанные выводы поэтапно отмечаются на нижней координатной прямой: если промежуток входит в пересечение или объединение, то над ним изображается штриховка, если точка входит в пересечение или объединение, то обозначающий ее штрих заменяем на сплошную точку, если не входит – то делаем ее выколотой. При этом следует придерживаться следующих правил:

  • промежуток включается в пересечение, если он одновременно включен и в множество A , и в множество B (другими словами, если есть штриховка над этим промежутком над обеими верхними координатными прямыми, отвечающими множествам A и B );
  • точка включается в пересечение, если она одновременно входит и в множество A , и в множество B (другими словами, если эта точка является невыколотой или внутренней точкой какого-либо интервала обеих числовых множеств A и B );
  • промежуток входит в объединение, если он входит хотя бы в одно из множеств A или B (иными словами, если есть штриховка над этим промежутком хотя бы над одной из координатных прямых, отвечающих множествам A и B );
  • точка входит в объединение, если она входит хотя бы в одно из множеств A или B (другими словами, если эта точка невыколотая или внутренняя точка какого-либо интервала хотя бы одного из множеств A и B ).

Проще говоря, пересечение числовых множеств A и B представляет собой объединение всех числовых промежутков множеств A и B , над которыми одновременно есть штриховка, и всех отдельных точек, принадлежащих одновременно и A , и B . А объединение двух числовых множеств есть объединение всех числовых промежутков, над которыми есть штриховка хотя бы у одного из множеств A или B , а также всех невыколотых отдельных точек.

Возвращаемся к нашему примеру. Закончим нахождение пересечения множеств. Для этого последовательно будем проверять множества (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) . Начинаем с (−∞, −3) , для наглядности выделим его на чертеже:

Этот промежуток не включаем в искомое пересечение, так как он не включен ни в A , ни в B (над этим промежутком нет штриховки). Так на этом шаге ничего на нашем чертеже не отмечаем и он сохраняет свой начальный вид:

Переходим к следующему множеству {−3} . Число −3 принадлежит множеству B (это невыколотая точка), но очевидно не принадлежит множеству A , поэтому не принадлежит и искомому пересечению. Поэтому на нижней координатной прямой делаем точку с координатой −3 выколотой:

Проверяем следующее множество (−3, 7) .

Оно входит в множество B (над этим интервалом есть штриховка), но не входит в множество A (над этим интервалом нет штриховки), поэтому, не будет входить и в пересечение. Следовательно, на нижней координатной прямой ничего не отмечаем:

Переходим к множеству {7} . Оно включено в множество B (точка с координатой 7 является внутренней точкой промежутка [−3, +∞)) , но не включено в множество A (эта точка выколотая), поэтому оно не будет включено и в искомое пересечение. Отмечаем точку с координатой 7 как выколотую:

Остается проверить промежуток (7, +∞) .

Он входит и в множество A , и в множество B (над этим промежутком есть штриховка), поэтому входит и в пересечение. Ставим штриховку над этим промежутком:

В результате на нижней координатной прямой мы получили изображение искомого пересечения множеств A=(7, +∞) и B=[−3, +∞) . Очевидно, оно представляет собой множество всех действительных чисел, больших семи, то есть, A∩B=(7, +∞) .

Теперь найдем объединение множеств A и B . Начинаем последовательную проверку множеств (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) на предмет их включения в искомое объединение двух числовых множеств A и B .

Первое множество (−∞, −3) не входит ни в A , ни в B (над этим промежутком нет штриховки), поэтому это множество не будет входить и в искомое объединение:

Множество {−3} входит в множество B , поэтому будет входить и в объединение множеств A и B :

Интервал (−3, 7) тоже входит в B (есть штриховка над этим интервалом), следовательно, он будет составной частью искомого объединения:

Множество {7} тоже будет входить в искомое объединение, так как оно входит в числовое множество B :

Наконец, (7, +∞) входит и в множество A , и в множество B , следовательно, будет входить и в искомое объединение:

По полученному изображению объединения множеств A и B заключаем, что A∩B=[−3, +∞) .

Получив некоторый практический опыт, проверку вхождения отдельных промежутков и чисел в состав пересечения или объединения можно будет проводить устно. Благодаря этому, Вы сможете очень быстро записывать результат. Покажем, как будет выглядеть решение примера, если не давать пояснения.

Пример.

Найдите пересечение и объединение множеств A=(−∞, −15)∪{−5}∪∪{12} и B=(−20, −10)∪{−5}∪(2, 3)∪{17} .

Решение.

Изобразим данные числовые множества на координатных прямых, это позволит нам получить изображения их пересечения и объединения:

Ответ:

A∩B=(−20, −15)∪{−5}∪(2, 3) и A∪B=(−∞, −10)∪{−5}∪∪{12, 17} .

Понятно, что при должном понимании озвученный выше алгоритм можно оптимизировать. Например, при нахождении пересечения множеств нет необходимости в проверке всех промежутков и множеств, состоящих их отдельных чисел, на которые разбивают координатную прямую граничные точки исходных множеств. Можно ограничиться проверкой лишь тех промежутков и чисел, которые составляют множество A или B . Остальные промежутки все равно не будут входить в пересечение, так как не принадлежат одному из исходных множеств. Проиллюстрируем сказанное, разобрав решение примера.

Пример.

Каково пересечение числовых множеств A={−2}∪(1, 5) и B=[−4, 3] ?

Решение.

Построим геометрические образы числовых множеств A и B :

Граничные точки заданных множеств разбивают числовую прямую на следующие множества: (−∞, −4) , {−4} , (−4, −2) , {−2} , (−2, 1) , {1} , (1, 3) , {3} , (3, 5) , {5} , (5, +∞) .

Несложно заметить, что числовое множество A можно «собрать» из только что записанных множеств, объединив {−2} , (1, 3) , {3} и (3, 5) . Для нахождения пересечения множеств A и B достаточно проверить, включены ли последние множества в множество B . Те из них, которые включены в B , и будут составлять искомое пересечение. Выполним соответствующую проверку.

Очевидно, {−2} входит в множество B (так как точка с координатой −2 является внутренней точкой отрезка [−4, 3]) . Интервал (1, 3) тоже входит в B (над ним есть штриховка). Множество {3} также входит в B (точка с координатой 3 является граничной и невыколотой множества B ). А интервал (3, 5) не входит в числовое множество B (над ним нет штриховки). Отметив сделанные выводы на чертеже, он примет такой вид

Таким образом, искомое пересечение двух исходных числовых множеств A и B представляет собой объединение следующих множеств {−2} , (1, 3) , {3} , которое можно записать как {−2}∪(1, 3] .

Ответ:

{−2}∪(1, 3] .

Остается лишь обговорить, как находить пересечение и объединение трех и большего количества числовых множеств. Эту задачу можно свести к последовательному нахождению пересечения и объединения двух множеств: сначала первого со вторым, дальше полученного результата с третьим, дальше полученного результата с четвертым и так далее. А можно использовать алгоритм, аналогичный уже озвученному. Единственное его отличие в том, что проверку вхождения промежутков и множеств, состоящих из отдельных чисел, нужно проводить не по двум, а по всем исходным множествам. Рассмотрим пример нахождения пересечения и объединения трех множеств.

Пример.

Найдите пересечение и объединение трех числовых множеств A=(−∞, 12] , B=(−3, 25] , D=(−∞, 25)∪{40} .

Решение.

Сначала, как обычно, изображаем числовые множества на координатных прямых, и ставим слева от них фигурную скобку, обозначающую пересечение, и квадратную скобку для объединения, а снизу изображаем координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Так координатная прямая оказывается представлена числовыми множествами (−∞, −3) , {−3} , (−3, 12) , {12} , (12, 25) , {25} , (25, 40) , {40} , (40, ∞) .

Начинаем поиск пересечения, для этого по очереди смотрим, входят ли записанные множества в каждое из множеств A , B и D . Во все три исходных числовых множества входит интервал (−3, 12) и множество {12} . Они и составляют искомое пересечение множеств A , B и D . Имеем A∩B∩D=(−3, 12] .

В свою очередь искомое объединение будут составлять множества (−∞, −3) (входит в A ), {−3} (входит в A ), (−3, 12) (входит в A ), {12} (входит в A ), (12, 25) (входит в B ), {25} (входит в B ) и {40} (входит в D ). Таким образом, A∪B∪D=(−∞, 25]∪{40} .

Ответ:

A∩B∩D=(−3, 12] , A∪B∪D=(−∞, 25]∪{40} .

В заключение заметим, что пересечение числовых множеств частенько является пустым множеством. Это отвечает случаям, когда исходные множества не имеют элементов, одновременно принадлежащих всем им.

(10, 27) , {27} , (27, +∞) . Ни одно из записанных множеств одновременно не входит в четыре исходных множества, а это означает, что пересечение множеств A , B , D и E есть пустое множеств.

Ответ:

A∩B∩D∩E=∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.