Виды водогрейных котлов (паровые, газовые и др.), эксплуатация.

Водогрейные котлы предназначаются для отопления индивидуальных жилых помещений, общественных зданий небольшого размера, а также таун-хаусов. По большей части, их устанавливают в районах без центрального отопления, либо там, где возведение котельной не является целесообразным. Так или иначе, водогрейными котлами (вне зависимости от их конструкции и исполнения) называют устройства, которые за счет своих технических характеристик вырабатывают тепло при сжигании определенного топлива, после чего передают тепловую энергию теплоносителю, коим является обычная вода. В свою очередь, при осуществлении циркуляции воды по трубной системе отопительного контура, помещение нагревается до определенной температуры.

Конструкция водогрейных котлов

В настоящее время в российских магазинах можно обнаружить водогрейные котлы, которые имеют более-менее одинаковую конструкцию. Различия будут наблюдаться лишь в пиковой мощности устройства, а также в его производителе, который может быть как отечественным, так и зарубежным. Что касается конструктивных особенностей, то современный котельный аппарат представляет собой чугунный или толстолистовой стальной теплоизолированных корпус с теплообменником. Именно в теплообменнике осуществляется нагревание воды (теплоносителя), которая после достижения определенной температуры начинает поступать в отопительную систему.

Многие модели водотрубных и жаротрубных котельных аппаратов двухконтурные, хотя и одноконтурных моделей хватает. Если аппарат имеет два контура, то горячая вода будет поступать не только в отопительную систему, но и в водопровод, после чего может использоваться в бытовых целях. Также, конструкция отдельных моделей предусматривает наличие специальных циркуляторов, интенсифицирующих водооборот. Кроме того, в аппарате могут быть предусмотрены мембранные расширительные баки. Незначительные отличия в конструкции могут наблюдаться при реализации возможности использовать различное топливо, будь то газ, твердое топливо, жидкое топливо или электричество. Большой популярностью пользуются универсальные модели, который фактически «всеядны». Независимо от того, какое топливо будет использоваться, котельный аппарат должен иметь «на борту» систему, которая будет автоматически поддерживать процессы горения.

Классификация водогрейные котлов

Чаще всего котлы водогрейные классифицируют по виду используемого горючего, а также по месту размещения и предназначению.

1. По виду топлива

Твердотопливные водогрейные котлы на дровах, на опилках, на пеллетах, на угле, на древесных отходах. .

Предназначаются для частного дома или для бани, что объясняется необходимостью выделения большой площади для их установки, а также для размещения необходимых запасов топлива.

Котельные аппараты на жидком топливе (на отработанном масле или на отработке, на мазуте, на дизельном топливе).

Используются для отопления частных жилых домов, что объясняется аналогичными причинами. Разница лишь в том, что в соответствии с правилами ГОСТ и ПУБЭ жидкое топливо должно храниться на безопасном расстоянии от котельного аппарата, во избежание взрывоопасных ситуаций.

Котлы газовые водогрейные, использующие природный или сжиженный газ. Могут использоваться как в частных домах, так и в квартирах и таунхаусах.

Электрические котельные аппараты, использующиеся для обустройства отопления небольших коттеджей и городских квартир.

2. По назначению

Промышленные котельные аппараты высокой мощности, которые используют пар в качестве основного теплоносителя. Часто их называют паровыми котлами. Их мощность измеряется не в кВт, а в мВт. Например, есть модели на 5 мВт и на 40 мВт, справляющиеся с гигантским объемом работы. За работой подобных устройств обязательно следит профессиональный оператор или машинист, имеющий в наличии все необходимые режимные карты и инструкции для проведения быстрого ремонта своими руками. Кроме того, в его задачу входит перевод котла в водогрейный режим и в водно химический режим, консервация, очистка поверхности нагрева, промывка, тестовая растопка, обвязка, проверка арматуры, утилизатора, каминной топки, барабана, печи и т.д.

Бытовые котельные аппараты малой мощности и средней мощности, которая на порядок меньше, чем у котлов промышленного назначения. Предназначаются для отопления бытовых помещений, имеющих определенную площадь.

3. По месту размещения (по исполнению).

Напольные водогрейные аппараты. Стационарные котлы, которые могут работать на самом различном топливе.
Настенные водогрейные аппараты. Навесной вариант, применяющий в качестве энергоносителя электричество или газ.

4. По методу нагрева воды

Проточные устройства, нагревающие воду до определенной температуры при прохождении теплоносителя через нагревательный элемент.

Устройства с накопительными баками, где нагрев воды обеспечивается аккумулирующими баками той или иной емкости. Наполнение баков водой происходит по мере расходования.

Напольные водогрейные котлы

Напольные аппараты водогрейного типа работают на газе, на жидком или на твердом топливе. Данный вариант котельного оборудования должен устанавливаться исключительно в отдельном помещении, плюс отдельное помещение должно выделяться для хранения твердых и жидких видов топлива. Во втором случае помещение в обязательном порядке должно оснащаться противопожарными средствами, предусмотренными правилами, нормативами и требованиями СНиП. Напольные котлы оснащаются всеми необходимыми средствами управления и автоматизации, которые позволяют получать доступ к котельному помещению только при возникновении экстренных ситуаций. Дополнительные удобства обеспечиваются наличием автоматических систем регулирования уровня нагрева воды, на основе анализа температуры на открытом воздухе и в помещении. Также, существуют специализированные программные устройства, переводящие систему в необходимый режим на основе заранее прописанной программы действия.

Настенные водогрейные котлы

Если напольное котельное оборудование требует выделения отдельного помещения для их монтажа, то настенные устройства могут устанавливаться в ванной, в прихожей, на кухне и т.д. Определение помещения для установки будет обуславливаться как выбранным видом энергоносителя, так и вопросом элементарного удобства размещения. То есть, пользователю нужно решить, где эксплуатация водогрейных котлов будет для него более комфортной. Электрические и газовые аппараты могут иметь достаточно большую мощность, которой хватит на поддержание заданной температуры в помещении, плюс на обеспечение горячим водоснабжением как городской квартиры, так и большого загородного дома. Для нагрева воды в таких котлах может использоваться проточный метод или бойлерный метод. В первом случае речь будет идти об использовании нагревательного элемента, через который проходит вода. Во втором случае используется бойлер или накопительный бак, в котором нагревается теплоноситель. Бак заполняется по мере того, как будет расходоваться горячая вода.

Настенные котлы газового типа

Газовые настенные котельные аппараты могут быть одноконтурными (отопление) и двухконтурными (отопление и горячая вода). Также, различия между ними могут наблюдаться в системе подачи воздуха. Есть устройства с закрытой и открытой камерой сгорания. В первом случае используемый для поддержания процессов горения воздух забирается с улицы, а во втором случае – непосредственно из помещения. Настенные системы содержат в компактном корпусе все необходимые элементы котельной, выполненные в миниатюре. В их число входят элементы автоматического управления, системы безопасности (на случай аварийной остановки водогрейного котла), система вывода продуктов горения, насос, расширительный бак, газовая горелка и т.д.

Настенные котлы электрического типа

Котельное оборудование электрического типа в конструктивном плане заметно проще, чем газового типа. Оно характеризуется большей экологичностью, безопасностью и простотой использования. Главными элементами электрических устройств являются:

— Теплообменник. Водяной бак, внутри которого смонтированы электронагревательные элементы.

— Блок управления, а также регулирующие приборы, отвечающие за параметры используемого теплоносителя.

Главными преимуществами подобных устройств являются простота использования, большие сроки службы и сроки эксплуатации, а также возможность автоматизации подавляющего большинства процессов. Кроме того, стоит упомянуть по легкости установки и подключения, малом весе и компактных размерах. Электрические котельные аппараты можно устанавливать не в отдельных, а непосредственно в жилых или в подсобных помещениях. Среди недостатков подобных устройств можно выделить зависимость от электроэнергии, которая должна подаваться стабильно, а также высокую цену электроэнергии, в сравнении с другими видами энергоносителей.

Настенные котлы конденсационного типа

Данные устройства, наравне с пиролизными аппаратами длительного горения, приобрели огромную популярность в последнее время. Конденсационные котлы европейского производства обладают высочайшей эффективностью, а также завидной экономичностью. Высокие показатели КПД объясняются использованием уникального принципа работы, предусматривающего нагрев рабочей среды до максимальных температур. При этом тепло выделяется не только от сгорания самого энергоносителя, но и от нагрева конденсирующихся водяных паров. Кроме того, в работе задействовано тепло, которое уходит вместе с отводящимися продуктами горения. Реализация данного принципа, по праву считающегося инновационным, позволяет увеличить коэффициент полезного действия системы на 15 процентов, в сравнении с настенными устройствами традиционного типа. Правильное использование подобной аппаратуры резко уменьшает расход топлива, а также снижает количество выбросов в окружающую среду. Конденсационные котлы работают на природном или сжиженном газе, причем камера сгорания в них закрытая. Паровой водогрейный котел имеет в комплекте расширительный бак, циркуляционный насос, система обеспечения безопасности. Конденсационные аппараты характеризуются компактностью, современным дизайном, простотой управления и удобством обслуживания.

Плюс ко всему, производители оснащают их различными средствами автоматизации. При этом газовые котлы все также остаются потенциально опасными из-за угрозы взрыва. Зато они характеризуются высочайшей скоростью нагрева воды и экономичностью использования (при условии установки экономайзера).

Электрические водогрейные котлы

Электрические котельные аппараты очень популярны на территории Российской Федерации. На нашем рынке их предлагает целый ряд производителей, выпускающих устройства для теплоснабжения загородных коттеджей и частных домов. С помощью электрических котельных устройств становится возможным обеспечить помещение как теплом, так и горячей водой, вне зависимости от наличия централизованного горячего водоснабжения на участке.

Конструкция электрических котлов заметно проще, чем газовых аппаратов. Их не нужно регулярно обслуживать, они не взрываются, работать с ними легко и удобно. Да и в плане экологичности они могут дать фору газовым котлам.

Конструкция электрических моделей включает в себя:

— Теплообменник – бак со встроенными тэнами (теплоэлектрическими нагревателями).

— Шкаф управления и автоматики, который позволяет поддерживать температуру в доме на определенном уровне без необходимости постоянного контроля за ней.

Помимо воды, в качестве теплоносителя электрические котельные аппараты могут использовать незамерзающую жидкость, что более предпочтительно. Подобные устройства можно разделить по видам нагревательных элементов, которые в них используются.

Трубчатые ТЭНы. Теплоэлектрические нагреватели, заполненные специальным проводником, который будет нагреваться при контакте с электрическим током. Данные элементы будут нагревать проточную воду на постоянной основе, пока они подключены к электросети. Трубчатые нагреватели используются при обустройстве комбинированного отопления. Днем такая система дает тепло от газового, жидкотопливного (дизельного, газомазутного) или твердотопливного (угольного, дровяного) котла, который характеризуется большей экономичностью. Ночью же, когда тарифы на электроэнергию снижаются, система поддерживает тепло на электричестве.

Электроды. Котельные аппараты электродного типа осуществляют нагрев теплоносителя при возникновении ионного потока между электродами, о чем вы можете прочитать в описании. Их плюсом является отсутствие теплоэлектрических нагревателей, но поскольку теплоноситель – важная часть электроцепи, его нужно подготавливать специальным образом. В воду добавляются соли в заданном количестве, до достижения необходимой концентрации.

Итак, основными преимуществами электрических котельных аппаратов являются их невысокая стоимость, простота использования, легкость монтажа, компактность и малый вес, а также отсутствие необходимости выделять для их размещения отдельное помещение.

Конкретные марки и производители

Сегодня производители предлагают своим клиентам купить целый ряд водогрейных аппаратов, каждый из которых обладает своей принципиальной схемой. В продаже имеются отечественные и зарубежные (итальянские, немецкие, финские) котельные аппараты, каждый из которых проходит производственные испытания, техническое освидетельствование и процедуру сертификации. Особое значение имеет проведение гидравлических испытаний образцов, включающих пуск, продувку, проверку реакции на кислотные среды и щелочение, тепловой расчет. Перед пуском водогрейные котлы промываются. Все это позволяет производителю получить паспорта и сертификаты на свою продукцию, позволяющие продавать ее по всему миру, включая Российскую Федерацию. Что касается конкретных изготовителей теплофикационного котельного оборудования (профессионального, а не самодельного), то сегодня проектированием и выпуском занимаются многие компании. Особо стоит выделить продукцию КВА, ДКВР, ПБ, ПТВМ, КВР, КВГ, КВГМ, ТВГ, КЧМ, Rex, Универсал, Братск, Лемакс, Студент Гидравлик, Аристон, Зиосаб, Термотехник, Энергия 3, ОКОФ, Сибирь, Титан, КОВ СТ, Мимакс, НИИСТУ 5, Vitomax 200, Vitoplex 100, Loos, Wolf, Ici, Baxi, Buderus, Viessmann.


Котел – устройство, в котором для получения пара или нагрева воды с давлением выше атмосферного, потребляемых вне этого устройства, используется теплота, выделяющаяся при сгорании органического топлива, а также теплота отходящих газов. Котел состоит из топки, поверхностей нагрева, каркаса, обмуровки. В котел могут также входить: пароперегреватель, поверхностный экономайзер и воздухоподогреватель.

Котельная установка – совокупность котла и вспомогательного оборудования, включающего: тягодутьевые машины, сборные газоходы, дымовую трубу, воздухопроводы, насосы, теплообменные аппараты, автоматику, водоподготовительное оборудование.

Топка (топочная камера ) – устройство, предназначенное для преобразования химической энергии топлива в физическую теплоту высокотемпературных газов с последующей передачей теплоты этих газов поверхностям нагрева (рабочему телу).

Поверхность нагрева – элемент котла для передачи теплоты от факела и продуктов сгорания теплоносителю (вода, пар, воздух).

Радиационная поверхность – поверхность нагрева котла, получающая теплоту в основном излучением.

Конвективная поверхность – поверхность нагрева котла, получающая теплоту в основном конвекцией.

Экраны – поверхности нагрева котла, расположенные на стенках топки и газоходов и ограждающие эти стенки от воздействия высоких температур.

Фестон – испарительная поверхность нагрева, располагаемая в выходном окне топки и образованная, как правило, трубами заднего экрана, разведенными на значительные расстояния путем образования многорядных пучков. Назначение фестона заключается в организации свободного выхода из топки топочных газов в поворотный горизонтальный газоход.

Барабан – устройство, в котором осуществляется сбор и раздача рабочей среды, обеспечение запаса воды в котле, разделение пароводяной смеси на пар и воду. Для этой цели используются размещенные в нем паросепарационные устройства.

Котельный пучок – конвективная поверхность нагрева котла, представляющая собой группу труб, соединенных общими коллекторами или барабанами.

Пароперегревател ь – устройство для повышения температуры пара выше температуры насыщения, соответствующей давлению в котле.

Экономайзер – устройство для предварительного нагрева воды продуктами сгорания до подачи ее в барабан котла.

Воздухоподогревател ь – устройство для подогрева воздуха продуктами сгорания до подачи его в горелки.


  1. ОБЩАЯ СХЕМА КОТЕЛЬНОЙ УСТАНОВКИ С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ, РАБОТАЮЩЕЙ
НА ПЫЛЕВИДНОМ ТВЕРДОМ ТОПЛИВЕ

Рис.1. Общая схема котельной установки с естественной циркуляцией,

работающей на твердом топливе:

топливный тракт:

1 – система пылеприготовления; 2 – пылеугольная горелка;

газовый тракт:

3 – топочная камера; 4 – холодная воронка; 5 – горизонтальный газоход; 6 – конвективная шахта; 7 – газоход; 8 – золоуловитель; 9 – дымосос; 10 – дымовая труба;

воздушный тракт:

11 – воздухозаборная шахта; 12 – вентилятор; 13 – калорифер; 14 – воздухоподогреватель 1-й ступени; 15 – воздухоподогреватель 2-й ступени; 16 – воздуховоды горячего воздуха ; 17 – первичный воздух; 18 – вторичный воздух;

пароводяной тракт:

19 – подвод питательной воды; 20 – водяной экономайзер 1-й ступени; 21 – водяной экономайзер 2-й ступени; 22 – трубопровод питательной воды; 23 – барабан; 24 – опускные трубы; 25 – нижние коллекторы; 26 – экранные (подъемные) трубы; 27 – фестон; 28 – паропровод сухого насыщенного пара; 29 – пароперегреватель; 30 – пароохладитель; 31 – главная паровая задвижка (ГПЗ)


  1. Воздушный тракт .
Холодный воздух из верхней части помещения котельного цеха с температурой 20-30 °С забирается вентилятором 12 через воздухозаборную шахту 11 и направляется в воздухоподогреватель 1-й ступени 14. В некоторых случаях холодный воздух может подогреваться до температуры 50-90 °С. При этом подогрев воздуха до 50 °С осуществляется за счет рециркуляции части горячего воздуха во всасывающий патрубок вентилятора, а до температуры 85-90 °С - в паровом или водяном калорифере 13. Проходя последовательно 1-ю и 2-ю ступени воздухоподогревателя (14, 15), воздух нагревается до температуры 300-350 °С. После воздухоподогревателя 2-й ступени воздух поступает в воздухопровод горячего воздуха 16 и часть его (первичный воздух) по воздухопроводу 17 направляется на мельницу для сушки и транспортировки угольной пыли. Другая часть (вторичный воздух) по воздухопроводу 18 направляется к пылеугольным горелкам.

  1. Пароводяной тракт.
Питательная вода после предварительной подготовки (умягчение, деаэрация) питательным насосом подается в коллектор экономайзера 1-й ступени. Температура ее после регенеративного подогревателя 145-220 °С. Если для регулирования температуры пара установлен поверхностный пароохладитель 30, то часть воды предварительно направляется туда, чтобы обеспечить регулирование температуры перегретого пара. Проходя последовательно 1-ю и 2-ю ступени водяного экономайзера 20, 21, вода нагревается либо до температуры кипения (t пв = t кип) – экономайзер кипящего типа, либо до температуры ниже температуры кипения (t пв естественной циркуляцией и происходит за счет разности плотностей воды в опускных трубах и пароводяной смеси в экранных (подъемных) трубах.

В барабане котла происходит разделение пароводяной смеси на пар и воду. В паровом пространстве барабана установлены сепарационные устройства, с помощью которых происходит улавливание капелек влаги из потока пара. Полученный в барабане сухой насыщенный пар по паропроводу 28 поступает в пароперегреватель 29, сначала в его противоточную часть, затем в прямоточную, где пар перегревается до заданной температуры. Между противоточной и прямоточной частью пароперегревателя устанавливается пароохладитель 30, который служит для регулирования температуры пара. Пар с заданными параметрами через главную паровую задвижку 31 поступает в паропровод и далее – к потребителю (паровые турбины, технологические потребители).

Котел с внешней стороны имеет наружное ограждение – обмуровку, которая включает в себя обшивку из стального листа 3-4 мм со стороны помещения котельной, вспомогательный каркас, и собственно огнеупорную обмуровку – тепловую изоляцию толщиной 50-200 мм. Основное назначение обмуровки и обшивки заключается в уменьшении тепловых потерь в окружающую среду и обеспечении газовой плотности.

Каждый паровой котел снабжается гарнитурой и арматурой. К гарнитуре относятся все приспособления и устройства - лючки, лазы, шиберы, обдувочные устройства и т. п.; к арматуре - все приборы и устройства, связанные с измерением параметров и регулированием рабочего тела (манометры, водоуказатели, задвижки, вентили, предохранительные и обратные клапаны и др.), обеспечивающие возможность и безопасность обслуживания агрегата.

Конструкции котла опираются на несущий стальной каркас, основными элементами которого являются стальные балки и колонны.

5.Газовый тракт .

Угольная пыль из системы пылеприготовления 1 через горелку 2 поступает в топочную камеру 3, сгорает во взвешенном состоянии, образуя факел, температура которого составляет 1600-2200 °С (в зависимости от вида сжигаемого топлива). Шлак, образующийся в процессе горения топлива , через так называемую холодную воронку 4 поступает в специальный бункер, оттуда водой смывается в шлакопроводы, а затем багерными насосами шлак направляется на золоотвал. От факела тепло излучением передается топочным экранам, при этом дымовые газы охлаждаются и температура их на выходе из топки составляет 900-1100 °С. Проходя последовательно через поверхности нагрева (фестон 27, пароперегреватель 29, расположенный в горизон-тальном газоходе 5, водяные экономайзеры 20, 21 и воздухоподогреватели 14, 15, расположенные в конвективной шахте 6), дымовые газы отдают свое тепло рабочему телу (пар, вода, воздух) и охлаждаются до температуры 120-170 °С за первой ступенью воздухоподогревателя. Затем дымовые газы по газоходу 7 поступают в золоуловитель 8, где происходит улавливание золовых частиц из потока дымовых газов. Зола, уловленная из дымовых газов в золоуловителе воздухом или водой, транспортируется на золоотвал. Очищенные от золы дымовые газы дымососом 9 направляются в дымовую трубу 10. С помощью дымовой трубы происходит рассеивание вредных пылегазовых выбросов в атмосфере.

(7) 4. ТЕПЛОВОЙ БАЛАНС КОТЕЛЬНОГО АГРЕГАТА(из лекции лучше)

При составлении теплового баланса котельного агрегата устанавливается равенство между поступившим в агрегат количеством тепла, называемым располагаемым теплом , и суммой полезно использованного тепла Q 1 и тепловых потерь Q 2-6 . На основании теплового баланса вычисляются КПД котельного агрегата и необходимый расход топлива.

Тепловой баланс составляется на 1кг твёрдого (жидкого) или 1м 3 газообразного топлива при установившемся тепловом состоянии котельного агрегата.

Общее уравнение теплового баланса имеет вид

Q 1 + Q 2 + Q 3 + Q 4 + Q 5 + Q 6 , кДж/кг или кДж/м 3 .

Располагаемая теплота 1 кг твердого (жидкого) топлива определяется по формуле

где - низшая теплота сгорания рабочей массы топлива, кДж/кг; i тл - физическая теплота топлива, кДж/кг; Q ф - теплота, вносимая в топку с паровым дутьем или при паровом распылении мазута, кДж/кг; Q в.вн - теплота, внесенная в топку воздухом при его подогреве вне котла, кДж/кг.

Для большинства видов достаточно сухих и малосернистых твёрдых топлив принимают Q р = , а для газового топлива принимается . Для сильно влажных твёрдых топливи жидких топливучитывается физическая теплота топлива i тл, которая зависит от температуры и теплоёмкости поступающего на горение топлива

i тл = с тл t тл.

Для твёрдых топлив в летний период времени принимают t тл = 20 °С, а теплоёмкость топлива рассчитывают по формуле

КДж/(кг· К) .

Теплоёмкость сухой массы топлива составляет:

Для бурых углей - 1,13 кДж/(кг∙ К);

Для каменных углей - 1,09 кДж/(кг·К);

Для углей А, ПА, Т - 0,92 кДж/(кг·К).

В зимний период принимают t тл =0 °С и физическую теплоту не учитывают.

Температура жидкого топлива (мазута) должна быть достаточно высокой для обеспечения тонкого распыла в форсунках котельного агрегата. Обычно она составляет = 90-140 °С.

Теплоёмкость мазута

, кДж/(кг ·К) .

В случае предварительного (внешнего) подогрева воздуха в калориферах перед его поступлением в воздухоподогреватель котельного агрегата теплоту такого подогрева Q в.вн включают в располагаемую теплоту топлива и рассчитывают по формуле

где  гв - отношение количества горячего воздуха к теоретически необходимому; Δα вп – присосы воздуха в воздухоподогревателях ; - энтальпия теоретического объема холодного воздуха; - энтальпия теоретического объема воздуха на входе в воздухоподогреватель.

При использовании для распыла мазута паромеханических форсунок в топку котельного агрегата вместе с разогретым мазутом поступает пар из общестанционной магистрали. Он вносит в топку дополнительную теплоту Q ф, определяемую по формуле

Q ф = G ф (i ф – 2380) , кДж/кг,

где G ф – удельный расход пара на 1 кг мазута, кг/кг; i ф - энтальпия пара, поступающего в форсунку, кДж/кг.

Параметры пара, поступающего на распыл мазута, обычно составляют 0,3-0,6 МПа и 280-350 °С; удельный расход пара при номинальной нагрузке находится в пределах G ф = 0,03 - 0,05 кг/кг.

Полное количество теплоты, полезно использованной в котле:

- для водогрейного котла

Q = D в , кВт,

где D в - расход воды через котел, кг/с; , - энтальпия воды на входе и на выходе из котла, кДж/кг;

- для парового котла

где D пе - расход перегретого пара, кг/с; D пр - расход продувочной воды (под непрерывной продувкой понимают ту часть воды, которая удаляется из барабана котла для снижения солесодержания котловой воды), кг/с; i пе - энтальпия перегретого пара, кДж/кг; i пв - энтальпия питательной воды, кДж/кг; i кип - энтальпия кипящей воды, кДж/кг.

Энтальпии определяются по соответствующим температурам пара и воды с учетом изменения давления в пароводяном тракте котельного агрегата.

Расход продувочной воды из барабанного парового котельного агрегата составляет

где р - непрерывная продувка котельного агрегата, % ; при р Коэффициент полезного действия проектируемого парового котельного агрегата определяется из обратного баланса

 = 100 - (q 2 + q 3 + q 4 + q 5 + q 6) , %.

Задача расчета сводится к определению тепловых потерь для принятого типа парового котельного агрегата и сжигаемого топлива.
8. Потери теплоты с уходящими газами

Потери теплоты с уходящими газами q 2 (5-12%) возникают из-за того, что физическая теплота (энтальпия) газов, покидающих котел, превышает теплоту поступающего в котел воздуха и определяется по формуле

, % ,

где I ух - энтальпия уходящих газов, кДж/кг или кДж/м 3 , определяемая по  ух при избытке воздуха в продуктах сгорания за воздухоподогревателем первой ступени; I о хв - энтальпия холодного воздуха.

Потери теплоты с уходящими газами зависят от выбранной температуры уходящих газов и коэффициента избытка воздуха, так как увеличение избытка воздуха приводит к увеличению объема дымовых газов и, следовательно, возрастанию потерь.

Одним из возможных направлений снижения потерь теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах, величина которого зависит от коэффициента избытка воздуха в топке и присосов воздуха в газоходы котла

 ух = + .

(9)Потери теплоты с химическим недожогом топлива q 3 (0 –2 %) возникают при появлении в продуктах сгорания горючих газообразных составляющих (СО, Н 2 , СН 4 ), что связано с неполным сгоранием топлива в пределах топочной камеры. Догорание же этих горючих газов за пределами топочной камеры практически невозможно из-за относительно низкой их температуры.

Химическая неполнота сгорания топлива может являться следствием:

Общего недостатка воздуха (α т),

Плохого смесеобразования (способ сжигания топлива, конструкция горелочного устройства),

Низких или высоких значений теплонапряжения топочного объема (в первом случае – низкая температура в топке; во втором – уменьшение времени пребывания газов в объеме топки и невозможности в связи с этим завершения реакции горения).

Потеря теплоты с химическим недожогом зависит от вида топлива, способа его сжигания и принимается на основании опыта эксплуатации паровых котельных агрегатов.

Потери теплоты с химическим недожогом определяются суммарной теплотой сгорания продуктов неполного окисления горючей массы топлива

100, % .

(9)Потери теплоты от механической неполноты сгорания q 4 (1-6 %) связаны с недожогом твердого топлива в топочной камере. Часть его в виде горючих частиц, содержащих углерод, уносится газообразными продуктами сгорания, другая часть – удаляется вместе со шлаком. При слоевом сжигании возможен также провал части топлива через прозоры колосниковой решетки. Величина их зависит от способа сжигания топлива, способа шлакоудаления, выхода летучих, грубости помола, зольности топлива и рассчитывается по формуле

где а шл + пр, а ун - доли золы топлива в шлаке, провале и уносе; Г шл+пр, Г ун - содержание горючих в шлаке, провале и уносе, % .

(11)оптимальные значения коэффициента избытка воздуха в топке α т при сжигании:

мазута 1,05 – 1,1;

природного газа 1,05 – 1,1;

твердого топлива :

камерное сжигание 1,15 – 1,2;

слоевое сжигание 1,3 – 1,4.

Присосы воздуха по газовому тракту котла в идеале могут быть сведены к нулю, однако полное уплотнение различных лючков и гляделок затруднено, и для котлов, присосы составляют Δα = 0,15 – 0,3.

Важнейшим фактором, влияющим на потерю теплоты с уходящими газами, является температура уходящих газов . Температура уходящих газов оказывает решающее влияние на экономичность работы парового котельного агрегата, так как потеря теплоты с уходящими газами является при нормальных условиях эксплуатации наибольшей даже в сравнении с суммой других потерь. Снижение температуры уходящих газов на 12-16 °С приводит к повышению КПД котельного агрегата примерно на 1,0 %. Температура уходящих газов находится в пределах 120-170 °С. Однако глубокое охлаждение газов требует увеличения размеров конвективных поверхностей нагрева и во многих случаях приводит к усилению низкотемпературной коррозии.

Выбор оптимального значения коэффициента избытка воздуха в топке. Для различных топлив и способов сжигания топлива рекомендуется принимать определенные оптимальные значения α т.

Увеличение избытка воздуха (рис. 2) приводит к росту потерь теплоты с уходящими газами (q 2), а снижение - к повышению потерь с химическим и механическим недожогом топлива (q 3 , q 4).

Оптимальное значение коэффициента избытка воздуха будет соответствовать минимальному значению суммы потерь q 2 + q 3 + q 4 .

Рис. 2. К определению оптимального значения коэффициента

избытка воздуха

Таблица 1
Расход топлива В , кг/с, подаваемого в топочную камеру котельного агрегата, можно определить из баланса между полезным тепловыделением при горении топлива и тепловосприятием рабочей среды в паровом котельном агрегате

Кг/с или м 3 /с.

Расчетный расход топлива с учетом механической неполноты сгорания

Коэффициент полезного действия котла (брутто) по прямому балансу

Коэффициент полезного действия (нетто ) котельной установки

где Q сн - расход электроэнергии (в переводе на теплоту) на собственные нужды котельной установки, кВт.

(15)5. КЛАССИФИКАЦИЯ КОТЛОВ И ИХ ОСНОВНЫЕ ПАРАМЕТРЫ

Котлы различают по следующим признакам:

По назначению:

Энергетически е – вырабатывающие пар для паровых турбин; их отличает высокая производительность, повышенные параметры пара.

Промышленные – вырабатывающие пар как для паровых турбин, так и для технологических нужд предприятия.

Отопительные – производящие пар для отопления промышленных,жилых и общественных зданий. К ним относятся и водогрейные котлы. Водогрейный котел – устройство, предназначенное для получения горячей воды с давлением выше атмосферного.

Котлы-утилизаторы - предназначены для получения пара или горячей воды за счет использования тепла вторичных энергетических ресурсов (ВЭР) при переработке отходов химических производств, бытового мусора и т.д.

Энерготехнологические – предназначены для получения пара за счет ВЭР и являющиеся неотъемлемой частью технологического процесса (например, содорегенерационные агрегаты).

По конструкции топочного устройства (рис. 7):

Различают топки слоевые – для сжигания кускового топлива и камерные – для сжигания газового и жидкого топлива, а также твердого топлива в пылевидном (или мелкодробленом) состоянии.

Кроме того, по конструкции они могут быть однокамерными и многокамерными, а по аэродинамическому режиму – под разрежением и под наддувом .

По виду теплоносителя , генерируемого котлом: паровые и водогрейные .

По перемещению газов и воды (пара):


  • газотрубные (жаротрубные и с дымогарными трубами);

  • водотрубные;

  • комбинированные.
(18)Схема котла под наддувом. В этих котлах высоконапорная дутьевая установка обеспечивает избыточное давление в топочной камере 4 – 5 кПа, которое позволяет преодолеть аэродинамическое сопротивление газового тракта (рис. 8). Поэтому в этой схеме отсутствует дымосос. Газоплотность газового тракта обеспечивается установкой мембранных экранов в топочной камере и на стенах газоходов котла.


Рис. 8. Схема котла под «наддувом»:

1 – воздухозаборная шахта; 2 – высоконапорный вентилятор;

3 – воздухоподогреватель 1-й ступени; 4 – водяной экономайзер

1-й ступени; 5 – воздухоподогреватель 2-й ступени; 6 – воздуховоды

горячего воздуха; 7 – горелочное устройство; 8 – газоплотные

экраны, выполненные из мембранных труб; 9 – газоход

(19)Схема котла с многократной принудительной циркуляцией

Рис. 11. Конструктивная схема котла с многократной принудительной циркуляцией:

1 – экономайзер; 2 – барабан;

3 – опускная питательная труба; 4 – циркуляционный насос; 5 – раздача воды по циркуляционным контурам;

6 – испарительные радиа-ционные поверхности нагрева;

7 – фестон; 8 – пароперегреватель;

9 – воздухоподогреватель

Циркуляционный насос 4 работает с перепадом давления 0,3 МПа и позволяет применять трубы малого диаметра, что дает экономию металла. Малый диаметр труб и невысокая кратность циркуляции (4 – 8) вызывают относительное снижение водяного объема агрегата, следовательно, снижение габаритов барабана, уменьшение сверлений в нем, а отсюда общее снижение стоимости котла.

Малый объем и независимость полезного напора циркуляции от нагрузки позволяют быстро растапливать и останавливать агрегат, т.е. работать в регулировочно-пусковом режиме. Область применения котлов с многократной принудительной циркуляцией ограничивается сравнительно невысокими давлениями, при которых можно получать наибольший экономический эффект за счет удешевления развитых конвективных испарительных поверхностей нагрева. Котлы с многократной принуди-тельной циркуляцией нашли распространение в теплоутилизационных и парогазовых установках.
(20)Схема жаротрубного котла . Котлы предназначены для замкнутых систем отопления, вентиляции и горячего водоснабжения и выпускаются для работы при допустимом рабочем давлении 6 бар и допустимой температуре воды до 115 °С. Котлы предназначены для работы на газообразном и жидком топливе, в том числе на мазуте и сырой нефти, и обеспечивают КПД при работе на газе – 92 % и на мазуте – 87 %.
Стальные водогрейные котлы имеют горизонтальную реверсивную камеру сгорания с концентрическим расположением дымогарных труб (рис. 9). Для оптимизации тепловой нагрузки, давления в камере сгорания и температуры отходящих газов дымогарные трубы оснащены турбулизаторами из нержавеющей стали.

Рис. 9. Схема топочной камеры жаротрубных котлов:

1 – передняя крышка;

2 – топка котла;

3 – дымогарные трубы;

4 – трубные доски;

5– каминная часть котла;

6 – люк каминной части;

7 – горелочное устройство


(21)Рис. 12. Конструктивная схема прямоточного котла Рамзина:

3 – нижний распределительный коллектор воды; 4 – экранные

трубы; 5 – верхний сборный коллектор смеси; 6 – вынесенная

переходная зона; 7 - настенная часть перегревателя;

8 – конвективная часть перегревателя; 9 –воздухоподогреватель;

10 – горелка
+лекции

(22)Компоновка котлов

Под компоновкой котла подразумевается взаимное расположение газоходов и поверхностей нагрева (рис. 13).

Рис. 13. Схемы компоновки котлов:

а – П-образная компоновка; б – двухходовая компоновка; в – компоновка с двумя конвективными шахтами (Т-образная); г – компоновка с U-образными конвективными шахтами; д – компоновка с инверторной топкой; е – башенная компоновка

Наиболее распространена П-образная компоновка (рис.13а – одноходовая , 13б – двухходовая ). Преимуществами ее являются подача топлива в нижнюю часть топки и вывод продуктов сгорания из нижней части конвективной шахты. Недостатки этой компоновки - неравномерное заполнение газами топочной камеры и неравномерное омывание продуктами сгорания поверхностей нагрева, расположенных в верхней части агрегата, а также неравномерная концентрация золы по сечению конвективной шахты.

Водогрейный котел – устройство, имеющее топку, обогреваемое продуктами сжигаемого в ней топлива, и предназначенное для нагревания воды, находящейся под давлением выше атмосферного и используемой в качестве теплоносителя вне самого устройства.

Теплота, вырабатываемая водогрейными котлами, используется на нужды отопления, вентиляции и горячего водоснабжения, а также может использоваться на различные технологические нужды.

Максимальная температура воды на выходе из котлов в зависимости от их теплопроизводительности может составлять 95, 115, 150 и 200 ºC.

Все водогрейные котлы можно разделить на газотрубные и водотрубные. По материалу, из которого изготовлены водогрейные котлы, их можно разделить на стальные и чугунные. Чугунные котлы отличаются большей коррозионной стойкостью.

По характеру циркуляции воды (независимо от конструкции) все водогрейные котлы являются прямоточными.

Водогрейный котел состоит из топочного устройства и тепловоспринимающих поверхностей, которые для водотрубных котлов делятся на топочные экраны, выполненные из отдельных панелей, представляющих собой ряд параллельно включенных труб, объединенных входными и выходными коллекторами, и конвективные поверхности нагрева, в большинстве случаев набираемые из змеевиков.

Чугунные водогрейные котлы работают при давлении воды в системе не более 0,6 МПа. Максимальная температура нагреваемой воды – 95 о C. Допускается работа котлов с температурой до 115 о C при рабочем давлении в системе отопления не ниже 0,35 МПа. В настоящее время чугунные котлы выпускают теплопроизводительностью, как правило, не превышающей 2 МВт.

Чугунные котлы собирают из отдельных литых секций, соединенных между собой с помощью отдельных конических ниппелей, и стягивают стяжными болтами, которые проходят через отверстия ниппелей. Такая конструкция позволяет подбирать требуемую поверхность нагрева котла, а также производить замену отдельных секций.

Существуют специализированные чугунные секционные котлы, предназначенные для сжигания газообразного и жидкого топлива, а также для сжигания твердого топлива. Последние могут быть переведены на сжигание газообразного топлива при соответствующей переделке.

К специализированным котлам для сжигания газообразного топлива, например, относятся котлы «Факел», «Братск-1Г», а также большое число чугунных котлов импортного производства.

Помимо секционных чугунных котлов в отопительных котельных широко используются стальные водотрубные котлы следующих типов: ТВГ, КВГ, КВ-ГМ и ПТВМ.

Теплофикационный водогрейный газовый котел ТВГ представляет собой прямоточный секционный теплогенератор с принудительной циркуляцией воды, оборудованный отдельным дымососом и вентилятором. Котлы ТВГ выпускаются теплопроизводительностью 4,65 МВт (ТВГ-4) и 9,3 МВт (ТВГ-8). Особенностью котлов является развитая радиационная поверхность. Котлы ТВГ-4 и ТВГ-8 имеют три двухсветных экрана и четыре горелки. Двухсветные экраны делят топку на четыре отсека. Кроме того, каждый котел имеет два односветных экрана, расположенных у стенок, и потолочный экран, частично переходящий во фронтовой экран.

Конвективная поверхность нагрева состоит из двух секций с верхними и нижними коллекторами, соединенными между собой восемью стояками, в каждый из которых вварены по четыре П-образных змеевика. Змеевики располагаются параллельно фронту котла в шахматном порядке. Для направления движения воды по змеевикам в стояках есть перегородки.

Для сжигания газа используются подовые горелки с прямой щелью, заканчивающейся вверху внезапным расширением. Горелки размещены между вертикальными топочными экранами.

В настоящее время вместо котлов ТВГ выпускаются газовые водогрейные котлы типа КВ-Г теплопроизводительностью 4,65 и 7,56 МВт. Это прямоточные секционные котлы, работающие на газовом топливе. Котлы рассчитаны на подогрев воды от 70 до 150 ºCс качественным регулированием отпусков тепла, т.е. с постоянным расходом воды через котел. Температура воды на входе в котел поддерживается постоянной, равной 70 ºCна всех нагрузках. Котлы КВ-Г представляют собой трубную систему, скомпонованную в одном транспортабельном блоке. Трубная система состоит из радиационной и конвективной поверхностей нагрева.

Радиационные поверхности нагрева котлов КВ-Г образуются левым и правым боковыми экранами, двумя двухсветными экранами и потолочным экраном. Конвективная поверхность нагрева состоит из П-образных ширм.

В котлах КВ-Г используются три подовые горелки, которые размещены между секциями вертикальных топочных экранов.

Стальные прямоточные водогрейные котлы КВ-ГМ унифицированной серии выпускаются различных типоразмеров по теплопроизводительности. Котлы предназначены для установки на ТЭЦ, в производственно-отопительных и отопительных котельных, работающих на газообразном и жидком топливе.

Котлы КВ-ГМ-4 иКВ-ГМ-6,5 теплопроизводительностью, соответственно, 4,65 и 7,56 МВт рассчитаны на подогрев воды от 70 до 150 ºCс качественным регулированием отпуска тепла. Котлы имеют единый профиль и различаются размерами (глубиной) топочной камеры и конвективной шахты.

Котлы оборудованы одной ротационной газомазутной горелкой типа РГМГ соответствующей теплопроизводительности. Топочная камера котлов, как и конвективная шахта, полностью экранирована мембранными панелями.

Конвективная поверхность нагрева состоит из двух пакетов. Каждый пакет набирается из П-образных ширм.

Котлы КВ-ГМ-10-150 ,КВ-ГМ-20-150 иКВ-ГМ-30-150 обеспечивают подогрев воды до 150 ºCс разностью температур воды на входе и выходе, равной 80 ºC, работают с постоянным расходом воды на всех нагрузках.

Котлы являются прямоточными, имеют единый профиль в разрезе и различаются только глубиной топки и конвективного газохода.

Топки котлов оборудованы установленной на фронтовой стенке одной газомазутной горелкой с ротационной форсункой типа РГМГ.

Топка полностью экранирована и разделена промежуточным двухрядным поворотным экраном на камеру горения и камеру дожигания.

Пакеты конвективных поверхностей нагрева расположены в вертикальном газоходе с полностью экранированными стенками.

Котлы КВ-ГМ-50-150 иКВ-ГМ-100-150 выполнены водотрубными, прямоточными с П-образной сомкнутой компоновкой поверхностей нагрева.

Котлы предназначены для получения горячей воды с температурой 150 ºCв отдельно стоящих котельных для использования в системах отопления, вентиляции и горячего водоснабжения объектов промышленного и бытового назначения и на ТЭЦ в качестве пиково-резервных источников тепла. Котлы используются для работы, как в основном режиме, так и в пиковом (для подогрева сетевой воды соответственно от 70 до 150 ºCи от 110 до 150 ºC). Котлы должны работать с постоянным расходом воды.

Топки котлов оборудованы газомазутными горелками с ротационными форсунками типа РГМГ-20 (две горелки на котле КВ-ГМ-50-150) и РГМГ-30 (три горелки на котле КВ-ГМ-100-150).

Топка и задняя стена конвективного газохода полностью экранированы. Конвективная поверхность нагрева котлов состоит из трех пакетов, расположены в вертикальном газоходе. Каждый пакет набирается из П-образных ширм.

Котлы полностью унифицированы между собой и отличаются только глубиной топочной камеры и конвективного газохода.

Водогрейные котлы типа ПТВМ предназначены для работы на газообразном (основное) и жидком (для кратковременной работы) топливе. Эти котлы имеют башенную компоновку, т.е. конвективные поверхности нагрева располагаются непосредственно над топочной камерой, выполненной в виде прямоугольной шахты. Топочная камера котлов полностью экранирована. Топка котлов типа ПТВМ-180 помимо фронтового, заднего и двух боковых экранов имеет два ряда двухсветных экранов, которыми она разделяется на три сообщающиеся камеры.

Конвективные поверхности нагрева котлов типа ПТВМ различной теплопроизводительности однотипны и отличаются только длиной П-образных змеевиков и числом параллельных змеевиков, составляющих одну секцию.

Принципиальной особенностью котлов башенной компоновки является применение большого числа сравнительно мелких горелок с подводом воздуха от индивидуальных дутьевых вентиляторов. В качестве горелочных устройств на котлах типа ПТВМ используются газомазутные горелки с периферийным подводом газа и механическим распыливанием мазута. Котлы работают на естественной тяге, и каждый котел имеет собственную дымовую трубу.

В последнее время в энергетической промышленности России большое внимание уделяется разработке и выпуску новых жаротрубно-дымогарных водогрейных котлов. Они находят широкое применение в районных, заводских и коммунально-бытовых отопительных котельных, приходя на смену стальным водотрубным и чугунным водогрейным котлам.

Увеличение производства новых конструкций жаротрубных котлов обосновано их меньшей стоимостью по сравнению с водотрубными и чугунными котлами, простотой монтажа, хорошей ремонтопригодностью, большей степенью автоматизации, а также способностью работать при давлении в топке выше атмосферного (под наддувом). Кроме того, необходимо отметить, что все вновь вводимые современные котлы работают на природном газе низкого давления, что существенно повышает надежность теплоснабжения во время максимума отопительной нагрузки.

В настоящее время распространены жаротрубно-дымогарные котлы с трехходовым движением дымовых газов. Трехходовой по движению газов жаротрубно-дымогарный котел, например АВ-2 (рис. 4.7), состоит из горизонтального цилиндрического барабана с плоскими отбортованными днищами. Днища являются одновременно трубными досками для жаровой трубы, расположенной по оси барабана, труб второго газохода, находящихся в нижней части барабана, и труб третьего газохода, разделенного на два пучка, расположенных по обе стороны жаровой трубы. В передней части жаровой трубы устанавливается горелка. Для исключения перегрева металла жаровой трубы в районе горелки внутренняя ее поверхность на длине, примерно равной диаметру, защищена шамотной кладкой.

В задней части котла расположена охлаждаемая поворотная камера, в которой газы поворачивают из жаровой трубы в трубы второго газохода. По этим трубам они проходят во фронт котла в переднюю камеру, повернув в которой на 180°, продукты сгорания по дымогарным трубам третьего хода удаляются в сборный газоход, соединенный с боровом котельной.

Существует также большое число котлов с реверсивной топкой, в которых дымовые газы, достигнув дна топки, поворачивают на 180° и по периферии топки направляются к фронту котла. В полости между передней водоохлаждаемой крышкой и передней трубной доской газы поворачивают на 180° и проходят конвективный газоход.

Вода из обратного трубопровода поступает в барабан котла и опускается вниз, омывая снаружи трубы третьего газохода, жаровую трубу, трубы второго газохода, развернувшись, поднимается вверх и отводится через выходной патрубок, расположенный в передней части корпуса котла.

В табл. 4.1 приведены основные технические характеристики некоторых типов водогрейных котлов жаротрубно-дымогарного типа, выпускаемых отечественными производителями.

Для централизованного теплоснабжения крупных промышленных предприятий, городов и отдельных районов применяются стальные водогрейные котлы большой тепловой мощности.


Водогрейные котлы предназначены для получения горячей воды заданных параметров главным образом для отопления. Они работают по прямоточной схеме с постоянным расходом воды. Конечная температура нагрева определяется условиями поддержания стабильной температуры в жилых и рабочих помещениях, обогреваемых отопительными приборами, через которые и циркулирует вода, нагретая в водогрейном котле. Поэтому при постоянной поверхности отопительных приборов температуру воды, подаваемой в них, повышают при снижении температуры окружающей среды. Обычно воду тепловой сети в котлах подогревают от 70-104 до 150-170 °С. В последнее время имеется тенденция к повышению температуры подогрева воды до 180-200 °С.


Во избежание конденсации водяных паров из уходящих газов и связанной с этим наружной коррозии поверхностей нагрева температура воды на входе в агрегат должна быть выше точки росы для продуктов сгорания. В этом случае температура стенок труб в месте ввода воды также будет не ниже точки росы. Поэтому температура воды на входе не должна быть ниже 60 °С при работе котла на природном газе, 70 °С при работе на малосернистом мазуте и 110 °С при использовании высокосернистого мазута. Поскольку в теплосети вода может охлаждаться до температуры ниже 60 °С, перед входом в агрегат к ней подмешивается некоторое количество уже нагретой в котле (прямой) воды.


Наиболее широкое распространение получили газомазутные котлы типов КВГМ и ПТВМ.


Котлы типа КВГМ (рис. 6) тепловой мощностью 4; 6,5; 10; и 30 Гкал/ч (4,8-35 МВт) имеют горизонтально расположенную топку и поверхности нагрева с прямоточным принудительным движением воды. Технические характеристики приведены в табл. 5.


Котлы типа ПТВМ теплопроизводительностью 30-180 Гкал/ч (35- 0 МВт) выполняют с П-образной (рис. 7) и башенной (рис. 8) компоновкой. Водогрейные котлы ПТВМ-50, ПТВМ-100 и ПТВМ-180, выполняемые только с башенной компоновкой, имеют экранированную топку и расположенные над ней конвективные поверхности. Технические характеристики приведены в табл. 6.


Таблица 5. Технические характеристики водогрейных котлов типа КВГМ


Параметр

Теплопроизводительность, ккал/ч

Рабочее давление, МПа (кгс/см 2)

Температура воды, °С:

на выходе

Расход воды, т/ч

Гидравлическое сопротивление, кгс/см 2

Коэффициент полезного действия, %:

на природном газе

сернистом мазуте

Температура уходящих газов, °С:

на природном газе

сернистом мазуте

Расход топлива:

на газе, м 3 /ч

на мазуте, кг/ч



Рис. 6. Водогрейный котел КВГМ-20 (а ) и схема его водяного тракта (б ) : 1, 3, 7 - подовофронтовой, задний и боковые экраны; - топка; 4 - фестон; 5 - экраны конвективной шахты; 6 - конвективные пучки; I, II- потоки воды


Таблица 6. Технические характеристики водогрейных котлов типа ПТВМ


Параметр

КВ-ГМ-30-150М (ПТВМ-30М)

Теплопроизводительность, Гкал/ч

Давление, МПа (кгс/см 2)

Температура воды, °С:

в пиковом режиме

в основном режиме на выходе

Расход воды, т/ч:

в пиковом режиме

основном режиме

Расчетный КПД котла (брутто), %,

при работе:

на мазуте

Компоновка котла

П-образная

Башенная

Количество газомазутных горелок, шт.

Количество дутьевых вентиляторов и

дымососов, шт.

2 вентилятора

и 1 дымосос

12 вентиляторов

16 вентиляторов

Габариты, мм:


Простейшая конфигурация котла и небольшое сопротивление конвективных пакетов позволили работать с естественной тягой, не требующей установки дымососов.


Для нужд отопления и горячего водоснабжения жилых, производственных и административных зданий применяются котлы стальные водогрейные КСВ ЗАО «Запсибгазпрома» (завод-изготовитель «Сибмет»).


Котел стальной водогрейный (КСВ) представляет собой трехходовой жаротрубнодымогарный котел, работающий с наддувом. Под избыточным давлением, обеспечиваемым вентилятором, подающийся для горения воздух, продукты сгорания отводятся из жаровой трубы через поворотную камеру в огневые трубы второго хода и далее через дымогонные трубы третьего хода в сажевую коробку, расположенную в задней части котла, откуда они поступают в дымовую трубу (рис. 9).


В качестве топлива можно использовать газ или мазут. Срок службы котла - 15 лет.


Основные технические данные котлов КСВ приведены в табл. 7 и 8. В России на рынке котлов широкое распространение получили также водогрейные жаротрубные котлы ОАО «Дорогобужкотломаш».


Таблица 7. Технические дхарактеристики котлов типа КСВ

Параметр

Номинальная тепло-производительность, МВт

Коэффициент полезного действиям, %, не менее

Минимальная температура воды, °С:

на выходе

Гидравлическое сопротивление, МПа (кгс/см 2)

Максимальное рабочее давление воды, МПа (кгс/см 2)

Расход топлива, (природный газ), м 3 /ч

Расход воды, м 3 /ч, не менее

Объем котла, м 3

Поверхность нагрева котла, м 2

Температура наружной поверхности кожуха (теплоизоляции), °С, не более

Исполнение котла (по стороне обслуживания)

Прав./лев.

Прав./лев.

Прав./лев.

Прав./лев.

Прав./лев.

Прав./лев.

Прав./лев.

Габариты, м, не более

Масса котла, кг, не более

Климатическое исполнение

по ГОСТ 15150 - 69

Горелка типа



Рис. 7. : 1 - топка; 3 - фронтовой и задний экраны; 4 - фестон; 5 - экраны конвективной шахты; 6 - ступени ширмовой конвективной поверхности



Рис. 8. : 1, 4, 6 - задний, фронтовой и боковые экраны; - конвективные поверхности; 3 - дымовая труба; 5 - топка; 7 - нижний коллектор фронтового экрана; 8 - нижний коллектор заднего экрана


На рис. 10 представлены конструктивные схемы водогрейных газомазутных автоматизированных котлов, которые предназначены для выработки горячей воды с температурой 150 °С, используемой для отопления, горячего водоснабжения и технологических целей.


На рис. 11 представлены конструктивные схемы жаротрубных и водотрубных котлов ОАО «Дорогобужкотломаш», в табл. 9 и 10 даны основные параметры и технические характеристики вышеуказанных котлов.


Таблица 8. Технологические и экологические характеристики котлов КСВ


Параметр

Фактическое значение

Нормированное значение по ГОСТ

Температура продуктов сгорания на выходе котла, °С

Пункты 1, 6 ГОСТ 10617-83 не менее 160

ГОСТ 10617-83 не более 130

ГОСТ 10617-83 не более 130

Теоретическое значение 4,0

Теоретическое значение 11,8 (при работе на газе)

Потери теплоты от химической неполноты сгорания на выходе топки, %

Пункты 1, 6, 4 ГОСТ 204-97 не более 0,4



Рис. 9. : 1 - передняя крышка; - сажевая коробка; 3 - поворотная камера; 4 - жаровая труба; 5 - горелочный конус с обмуровкой; 6 - дымогарные трубы; 7 - смотровой люк; 8 - смотровой люк; 9 - люк для очистки; 10 - прямой патрубок; 11 - обратный патрубок; 12 - патрубок дымохода; 13 - взрывной клапан; 14 - дренаж; 15 - основание; 16 - изоляция


Аналогичные водогрейные жаротрубные котлы для систем водяного отопления домов, коттеджей, производственных, торговых и складских помещений производит ЗАО «ЗИОСАБ», г. Подольск.


Основные характеристики и параметры даны в табл. 11.

Водогрейные котлы «Турботерм»

В настоящее время все большее распространение получают водогрейные котлы с автоматизированным горелочным устройством и комплектом автоматики безопасности и управления (АБУ-1), поставляемые потребителю.


Котлы «Турботерм» изготавливаются в диапазоне мощностей от 110 до 5000 кВт. Котлы спроектированы в расчете на длительный срок эксплуатации (более 15 лет).


Таблица 9. Основные характеристики водогрейных котлов ОАО «Дорогобужкотломаш» тепловой мощностью от 0,05 до 7,56 МВт


Вид топлива

Мощность, МВт

Температура воды, °С

Габариты (ДxШxВ), мм

котла, кг

Расход воды, т/ч

на выходе

КВ-ГМ-0,05-115Н

(Дорогобуж-50) * 1

1302 *6 x750x935 *2

КВ-ГМ-0,08-115Н

(Дорогобуж-80) * 1

1412 *6 x750x935 *2

КВ-ГМ-0,11-115Н

(Дорогобуж-110) * 1

1552 *6 x750x935 *2

КВ-ГМ-0,15-115Н

(Дорогобуж-150) * 1

2132 *6 x930x1242 *2

КВ-ГМ-0,25-115Н

(Дорогобуж-150) * 1

2132 *6 x930x1242 *2

КВ-ГМ-0,35-115Н

(Дорогобуж-350) * 1

2634 *6 x1040x1387 *2

КВ-ГМ-0,05-115Н

(Дорогобуж-500) * 1

2634 *6 x1040x1387 *2

КВ-ГМ-0,75-115Н

(Дорогобуж-750) * 1

3120 *6 x1250x1509 *2

КВ-ГМ-1,0-115Н

(Дорогобуж-1000) * 1

3120 *6 x1250x1509 *2

КВ-ГМ-2,32-115Н

(Дорогобуж-2000) * 1

3560 *6 x1684x2023 *2

КВ-ГМ-2,0-115Н

(Днепр-2000) * 1

4870 *6 x1960x2530 *2

КВ-Г-0,4-95Н * 1

1620 *6 x1605 *6 x2035

КВ-Г-1,0-95Н * 1

1620 *6 x1736 *6 x2583

КВ-Г-0,63-95Н * 1

КВ-Г-1,0-95Н *4

КВ-Г-1,16-95Н

3071 *6 x1650x2360

КВ-Г-2,32-95Н

4198 *6 x1650x2462

КВ-Г-3,48-95Н

4198/3745 *3 x3371/2100 *3 x3670/2500 *3

КВ-Г-3,48-95Н

4571 *6 x1728x2462

КВ-Г-4,65-95Н

4114 *6 x2320x3160

КВ-Г-7,56-95Н

5578 *6 x2320x3160

КВ-ГМ-4,65-150 *4

5000/4336 *3 x3000/2200 *3 x3800/3360 *3

КВ-ГМ-7,56-150 *4

6 500/5 872 *3 x3100/2 0 *3 x3 800/ 3 360 *3

КВ-Р-4,65-150 *4

КВ-Р-7,56-150 *4


*1 Котлы поставляются в обмуровке, обшивке, с запорной арматурой в пределах котла.


*2 Высота без запорной арматуры.


*3 Габариты трубной системы котла.


*4 Стандартная поставка: трубная система в комплекте с запорной арматурой.


*5 Масса металла котла с колосниковой решеткой (в скобках с решеткой РПК-1).


*6 Параметры без горелки.


Условные обозначения: г - газ; м - мазут; у - уголь; д.т. - дизельное топливо.



Рис. 10.


Котлы сертифицированы в системе сертификации ГОСТ-Р, имеют сертификат соответствия №РОСС.RU.АЯ46.В18600, отвечают требованиям ГОСТ-Р и производятся серийно на заводе «Рэмэкс-Тепломаш» (г. Малоярославец) по ТУ 4931-001-32990435-96. Котлы «Турботерм» предназначены для замкнутых систем отопления и вентиляции, а также для систем горячего водоснабжения, рассчитаны на рабочее давление 0,6 МПа и температуру воды до 115 °С. Котлы работают под наддувом и предназначены для работы как на газообразном, так и на жидком топливе (включая мазутное) и обеспечивают нормируемые значения КПД по ГОСТ 10617-85.


Стальные водогрейные котлы марки «Турботерм» имеют горизонтальную реверсивную камеру сгорания с концентрическим расположением дымогарных труб. Для оптимизации тепловой нагрузки давления в камере сгорания и температуры отходящих газов дымогарные трубы оснащены турбулизаторами из нержавеющей стали (рис. 12). Современные теплоизолирующие материалы обеспечивают высокие теплотехнические характеристики котла.


Передняя крышка котла выполнена легкооткрывающейся на петлях. В зависимости от проекта петли крепятся справа или слева.


Таблица 10. Основные характеристики водогрейных котлов ОАО «Дорогобужкотломаш» тепловой мощностью от 11,63 до 9 МВт


Вид топлива

Мощность, МВт

Температура воды, °С

Расчетное давление воды на входе, МПа

Габариты (ДxШxВ), мм

Масса металла котла, кг

Расход воды, т/ч

на выходе

КВ-ГМ-11,63-150

КВ-Р-11,63-150

7430/8560x5210/5465x10410/9675

КВ-Д-11,63-150

12600x6600x10500

КВ-ГМ-23,26-150

КВ-Р-23,26-150

10860/12730x5210/5465x10410/9675

КВ-ГМ-35-150

16025/18630x5335/5335x12660/12660

КВ-ГМ-35-150 (ПТВМ-30М)

КВ-ГМ-58,2-150

10575x10000x14315

КВ-ГМ-58,2-150С

12300x10300x16490

КВ-Р-58,2-150

29840x9600x14170

КВ-Ф-58,2-150

32200x11520x13480

КВ-ГМ-69,8-150 (ПТВМ-60)

11050x8780x13245

КВ-ГМ-116,3-150

14680x9850x14365

КВ-ГМ-139,6-150 (ПТВМ-120)

11350x10700x17750

КВ-ГМ-209-150 (ПТВМ-180)

12000x17336x15600

Вариант с воздухоподогревателем.


Условные обозначения: г - газ; м - мазут; у - уголь; д - деревоотходы


Таблица 11. Основные технические характеристики водогрейных котлов ЗАО «ЗИОСАБ»


Параметр

Значение

Номинальная теплопроизводительность,

кВт (Гкал/ч)

Рабочее давление, МПа

Минимальная температура воды на входе, °С

Максимальная температура воды на выходе, °С

Расход воды, м 3 /ч: номинальный

минимальный

Водяной объем котла, м 3

Гидравлическое сопротивление, кПа

Аэродинамическое сопротивление, Па

Потери тепла от наружного охлаждения q5 , %

Масса котла, кг

Объем топки, м 3

Разрежение за котлом, Па

Расход воздуха, м 3 , на горение газа (жидкого топлива)

(жидкого топлива, кг/ч)

Температура уходящих газов, не ниже, °С

Уровень звука в контрольных точках, не более, дБ




Рис. 11. а - жаротрубные КВ-ГМ-0,05÷2,32-115Н: 1 - корпус котла, - камера поворотная, 3 - газоход с шибером, 4 - горелочное устройство, 5 - входной патрубок, 6 - выходной патрубок, 7 - патрубки предохранительных клапанов, 8 - смотровой лючок; б - водотрубные КВ-Г- 0,4÷1,0-95 Н: 1 - корпус котла, - топка циклонная, 3 - газоход, 4 - крышка, 5 - глазок, 6 - входной патрубок, 7 - выходной патрубок, 8 - патрубок установки горелки; в - водотрубные КВ-Г-1,16÷3,48-95 Н: 1 - корпус котла, - газоход, 3 - горелочное устройство, 4 - кирпичная стенка, 5 - конвективный газоход, 6 - топка; г - водотрубные КВ-Г-4,65÷7,56-95 Н: 1 - корпус котла, - топка, 3 - кирпичная стенка, 4 - конвективный газоход, 5 - газоход, 6 - горелочное устройство


Топка (камера сгорания) имеет реверсивную конструкцию. Специально разработанная геометрическая форма и большой объем топки способствуют полному сгоранию топлива и образованию отходящих газов с низким остаточным содержанием вредных веществ.


Конвективная часть включает в себя пучки дымогарных труб оптимального диаметра, закрепленных в трубных досках, которые обеспечивают низкое сопротивление течению топочных газов (от 50 до 600 Па в зависимости от типоразмера котла).


Задняя (каминная) часть котла имеет люк, который обеспечивает простую очистку газохода.


Технические параметры котлов «Турботерм» даны в табл. 12.

Водогрейные котлы Ygnis серии ST мощностью 430-9300 кВт

Это водогрейный моноблочный стальной жаротрубный котел с трехходовым движением продуктов сгорания для работы на природном газе, дизельном топливе или мазуте мощностью от 430 до 9300 кВт (рис. 13).


Факел горелки, работающей под наддувом, формируется вдоль горизонтальной топки от фронта котла.


Рис. 12. : а - общий вид; б - схема топки: 1 - передняя крышка, 2 - топка котла, 3 - дымогарные трубы, 4 - трубные доски, 5 - каминная часть котла, 6 - люк каминной части, 7 - горелочное устройство


Таблица 12. Основные характеристики и параметры котлов «Турботерм»


Мощность

Р раб, МПа

Т рабmax,

Масса без воды, кг

Габариты (ДxШxВ), мм

(ккал/ч). 10 3




Рис. 13.


Удлиненная горизонтальная нереверсивная цилиндрическая топка пригодна для монтажа практически любых дутьевых горелок, в том числе и ротационных.


Первый конвективный пучок жаровых труб возвращает продукты сгорания к фронту котла, а третий ход осуществляется вторым конвективным пучком стальных труб, направляющим продукты сгорания к газосборному коллектору в задней части котла.


Рабочее давление - 0,4 МПа (опрессовка 0,6 МПа).


Регулируемая температура сетевой воды - 100 ° С, максимальная - 110 °С.


Минимальная температура обратной воды 55 °C для природного газа, 50 °С для дизельного топлива.


Работает на газе, дизельном топливе, мазуте (возможно использование мазута Ml00 по отдельному запросу).


Основные технические характеристики и параметры котлов Ygnis серии ST мощностью 430-9300 кВт представлены в табл. 13 и 14.


Таблица 13. Основные технические характеристики котлов Ygnis серии ST мощнотью 430-1060 кВт


Параметр

Полезная мощность, кВт

Рабочее давление, МПа

Максимальное давление, МПа

Максимальная температура котловой воды, °С

Температура уходящих газов, °С

Расход природного газа, м 3 /ч

Расход жидкого топлива, л/ч

Объем котловой воды (примерный), л

Диаметр топки котла, мм

Длина топки котла, мм

Гидравлическое сопротивление, кПа:

минимальное

максимальное

Аэродинамическое сопротивление, кПа:

минимальное

максимальное

Диаметр амбразуры для присоединения горелки, мм

Масса без воды, кг


Таблица 14. Основные технические характеристики котлов Ygnis серии ST мощностью 1220-9300 кВт


Параметр

Полезная мощность, кВт

КПД при номинальной мощности, %

Расход природного газа, м 3 /ч

Расход жидкого топлива, л/ч

Объем котловой воды, л

Диаметр топки котла, мм

Длина топки котла, мм

Гидравлическое сопротивление, кПа: минимальное

максимальное

Аэродинамическое сопротивление, кПа: минимальное

максимальное

Длина эмиссионной трубы горелки, мм, не более

Диаметр присоединения горелки, мм

Масса без воды, кг

1. Дайте определение водогрейным и энергетически котлам. Дайте определение следующим элементам парогенератора: поверхности нагрева, пароперегреватели, барабана, воздухоподогревателя, экономайзера и обмуровки.

Водогрейный котёл - котёл для нагрева воды под давлением. «Под давлением» обозначает, что кипение воды в котле не допускается: её давление во всех точках выше давления насыщения при достигаемой там температуре (практически всегда оно выше и атмосферного давления).

Паровой котёл - котёл, предназначенный для генерации насыщенного или перегретого пара. Может использовать энергию топлива, сжигаемого в своей топке, электрическую энергию (электрический паровой котёл) или утилизировать теплоту, выделяющуюся в других установках (котлы-утилизаторы).

Поверхность нагрева котла - поверхность стенок, отделяющих дымовые газы от нагреваемых сред, через которые происходит передача тепла от дымовых газов.

Пароперегрева́тель - устройство, предназначенное для перегрева пара, то есть повышения его температуры выше точки насыщения. Использование перегретого пара позволяет значительно поднять КПД паровой установки.

Барабан котла - элемент стационарного котла, предназначенный для сбора и раздачи рабочего тела, для отделения пара от воды, очистки пара, обеспечения запаса воды в котле

Воздухоподогрева́тель - устройство, предназначенное для подогрева воздуха, направляемого в топкукотельного агрегата, с целью повышения эффективности горения топлива за счёт тепла уходящих газов.

Экономайзер (англ. Economizer , от английского слова economize - «сберегать») - элемент котлоагрегата, теплообменник, в котором питательная вода перед подачей в котёл подогревается уходящими из котла газами. Устройство повышает КПД установки.

Обмуровка - система ограждений котлоаг регата, отделяющих его топку и газоходы от окружающей среды. Обмуровку котла применяют в котлах, не имеющих цельносварных газоплотных экранов

2. Привести пример схемы УЗО, реагирующей на ток замыкания на землю (показать выбор уставки, перечислить достоинства и недостатки).

УЗО, реагирующее на ток замыкания на землю, предназначено для устранения опасности поражения током при прикосновении людей к корпусу в период замыкания на него фазы за счет быстрого отключения поврежденной электроустановки от сети. Здесь прибором защитного отключения является токовое реле КСТ (рис. 5.4, б), включенное в рассечку заземляющего проводника непосредственно или через трансформатор тока ТА. Ток срабатывания реле КСТ

3. Эксплуатация силовых трансформаторов: основные задачи, направления, мероприятия.

Перед включением трансформатора в сеть из резерва или после ремонта производится осмотр как самого трансформатора, так и всего включаемого с ним оборудования.


При этом проверяются :

уровень масла в расширителе и вводах трансформатора;

исправность и пусковое положение оборудования системы охлаждения;

правильное положение указателей переключателей напряжения;

положение заземляющего разъединителя и состояние разрядников в нейтрали;

отключен ли дугогасящий реактор;

состояние фарфоровых изоляторов и покрышек вводов, а также ши-нопроводов и экранированных токопроводов .

Если трансформатор находился в ремонте, то обращается внимание на чистоту рабочих мест, отсутствие закороток, защитных заземлений и посторонних предметов на трансформаторе и оборудовании трансформатора.

Включение трансформатора в сеть производится толчком на полное напряжение со стороны питания (сетевых трансформаторов со стороны обмотки ВН). Включение часто сопровождается сильным броском тока намагничивания. Однако автоматического отключения трансформатора дифференциальной токовой защитой при этом не происходит, так как она отстраивается от тока намагничивания при первом опробовании трансформатора напряжением, что позволяет избежать ложных срабатываний ее при всех последующих включениях.

При включении трансформатора в работу не исключено появление на нем сразу номинальной нагрузки. Включение на полную нагрузку разрешается при любой отрицательной температуре воздуха трансформаторов с системами охлаждения М и Д и не ниже -25 °С трансформаторов с системами охлаждения ДЦ и Ц. Если температура воздуха, а следовательно, и масла в трансформаторе окажется ниже указанной, ее поднимают включением трансформатора на холостой ход или под нагрузку не более 50 % номинальной. В аварийных ситуациях этих ограничений не придерживаются и трансформаторы включаются при любой температуре (что из-за перепада температур между маслом и обмотками, естественно, отражается на износе изоляции обмоток)

Повышение вязкости масла в зимнее время учитывается при включении в работу не только самого трансформатора, но и его охлаждающих устройств. Циркуляционные насосы серии ЭЦТ надежно работают при температуре перекачиваемого масла не ниже -25 °С, а серии ЭЦТЭ - не ниже -20 °С. Поэтому при включении трансформаторов в работу циркуляционные насосы систем охлаждения включаются лишь после предварительного нагрева масла до указанных значений температур. Во всех остальных случаях насосы принудительной циркуляции масла должны автоматически включаться в работу одновременно с включением трансформатора в сеть. Вентиляторы охладителей при низких температурах масла должны включаться в работу, когда температура масла достигнет 45 °С.

, находящихся в работе, производится по амперметрам, на шкалах которых должны быть нанесены красные риски, соответствующие номинальным нагрузкам обмоток, Одновременно с контролем значения тока проверяется равномерность нa-грузки по фазам. У автотрансформаторов контролируется также ток в общей обмотке.