Сделать робота очень просто Давайте разберемся, что же потребуется чтобы создать робота в домашних условиях, для того чтобы понять основы робототехники .

Наверняка, насмотревшись фильмов про роботов, тебе не раз хотелось построить своего боевого товарища, но ты не знал с чего начать. Конечно, у тебя не получится построить двуногого терминатора, но мы и не стремимся к этому. Собрать простого робота может любой, кто умеет правильно держать паяльник в руках и для этого не нужно глубоких знаний, хотя они и не помешают. Любительское роботостроение мало чем отличается от схемотехники, только гораздо интереснее, потому что тут так же затронуты такие области, как механика и программирование. Все компоненты легкодоступны и стоят не так уж и дорого. Так что прогресс не стоит на месте, и мы будем его использовать в свою пользу.

Введение

Итак. Что же такое робот? В большинстве случаев это автоматическое устройство, которое реагирует на какие-либо действия окружающей среды. Роботы могут управляться человеком или выполнять заранее запрограммированные действия. Обычно на роботе располагают разнообразные датчики (расстояния, угла поворота, ускорения), видеокамеры, манипуляторы. Электронная часть робота состоит из микроконтроллера (МК) - микросхема, в которую заключён процессор, тактовый генератор, различная периферия, оперативная и постоянная память. В мире существует огромное количество разнообразных микроконтроллеров для разных областей применения и на их основе можно собирать мощных роботов. Для любительских построек широкое применение нашли микроконтроллеры AVR. Они, на сегодняшний день, самые доступные и в интернете можно найти много примеров на основе этих МК. Чтобы работать с микроконтроллерами тебе нужно уметь программировать на ассемблере или на Cи и иметь начальные знания в цифровой и аналоговой электронике. В нашем проекте мы будем использовать Cи. Программирование для МК мало чем отличается от программирования на компьютере, синтаксис языка такой же, большинство функций практически ничем не отличаются, а новые довольно легко освоить и ими удобно пользоваться.

Что нам нужно

Для начала наш робот будет уметь просто объезжать препятствия, то есть повторять нормальное поведение большинства животных в природе. Всё что нам потребуется для постройки такого робота можно будет найти в радиотехнических магазинах. Решим, как наш робот будет передвигаться. Самым удачным я считаю гусеницы, которые применяются в танках, это наиболее удобное решение, потому что гусеницы имеют большую проходимость, чем колёса машины и ими удобнее управлять (для поворота достаточно вращать гусеницы в разные стороны). Поэтому тебе понадобится любой игрушечный танк, у которого гусеницы вращаются независимо друг от друга, такой можно купить в любом магазине игрушек по разумной цене. От этого танка тебе понадобится только платформа с гусеницами и моторы с редукторами, остальное ты можешь смело открутить и выкинуть. Так же нам потребуется микроконтроллер, мой выбор пал на ATmega16 - у него достаточно портов для подключения датчиков и периферии и вообще он довольно удобный. Ещё тебе потребуется закупить немного радиодеталей, паяльник, мультиметр.

Делаем плату с МК

В нашем случае микроконтроллер будет выполнять функции мозга, но начнём мы не с него, а с питания мозга робота. Правильное питание - залог здоровья, поэтому мы начнём с того, как правильно кормить нашего робота, потому что на этом обычно ошибаются начинающие роботостроители. А для того, чтобы наш робот работал нормально нужно использовать стабилизатор напряжения. Я предпочитаю микросхему L7805 - она предназначена, чтобы на выходе выдавать стабильное напряжение 5В, которое и нужно нашему микроконтроллеру. Но из-за того, что падение напряжения на этой микросхеме составляет порядка 2,5В к нему нужно подавать минимум 7,5В. Вместе с этим стабилизатором используются электролитические конденсаторы, чтобы сгладить пульсации напряжения и в цепь обязательно включают диод, для защиты от переполюсовки.

Теперь мы можем заняться нашим микроконтроллером. Корпус у МК — DIP (так удобнее паять) и имеет сорок выводов. На борту имеется АЦП, ШИМ, USART и много другого, что мы пока использовать не будем. Рассмотрим несколько важных узлов. Вывод RESET (9-ая нога МК) подтянут резистором R1 к «плюсу» источника питания - это нужно делать обязательно! Иначе твой МК может непреднамеренно сбрасываться или, проще говоря - глючить. Так же желательной мерой, но не обязательной является подключение RESET’а через керамический конденсатор C1 к «земле». На схеме ты так же можешь увидеть электролит на 1000 мкФ, он спасает от провалов напряжения при работе двигателей, что тоже благоприятно скажется на работе микроконтроллера. Кварцевый резонатор X1 и конденсаторы C2, C3 нужно располагать как можно ближе к выводам XTAL1 и XTAL2.

О том, как прошивать МК, я рассказывать не буду, так как об этом можно прочитать в интернете. Писать программу мы будем на Cи, в качестве среды программирования я выбрал CodeVisionAVR. Это довольно удобная среда и полезна новичкам, потому что имеет встроенный мастер создания кода.

Управление двигателями

Не менее важным компонентом в нашем роботе является драйвер двигателей, который облегчает нам задачу в управлении им. Никогда и ни в коем случае нельзя подключать двигатели напрямую к МК! Вообще мощными нагрузками нельзя управлять с микроконтроллера напрямую, иначе он сгорит. Пользуйтесь ключевыми транзисторами. Для нашего случая есть специальная микросхема - L293D. В подобных несложных проектах всегда старайтесь использовать именно эту микросхему с индексом «D», так как она имеет встроенные диоды для защиты от перегрузок. Этой микросхемой очень легко управлять и её просто достать в радиотехнических магазинах. Она выпускается в двух корпусах DIP и SOIC. Мы будем использовать в корпусе DIP из-за удобства монтажа на плате. L293D имеет раздельное питание двигателей и логики. Поэтому саму микросхему мы будем питать от стабилизатора (вход VSS), а двигатели напрямую от аккумуляторов (вход VS). L293D выдерживает нагрузку 600 мА на каждый канал, а этих каналов у неё два, то есть к одной микросхеме можно подключить два двигателя. Но, чтобы перестраховаться, мы объединим каналы, и тогда потребуется по одной микре на каждый двигатель. Отсюда следует, что L293D сможет выдержать 1.2 А. Чтобы этого добиться нужно объединить ноги микры, как показано на схеме. Микросхема работает следующим образом: когда на IN1 и IN2 подаётся логический «0», а на IN3 и IN4 логическая единица, то двигатель вращается в одну сторону, а если инвертировать сигналы - подать логический ноль, тогда двигатель начнёт вращаться в другую сторону. Выводы EN1 и EN2 отвечают за включение каждого канала. Их мы соединяем и подключаем к «плюсу» питания от стабилизатора. Так как микросхема греется во время работы, а установка радиаторов проблематична на этот тип корпуса, то отвод тепла обеспечивается ногами GND — их лучше распаивать на широкой контактной площадке. Вот и всё, что на первое время тебе нужно знать о драйверах двигателей.

Датчики препятствий

Чтобы наш робот мог ориентироваться и не врезался во всё, мы установим на него два инфракрасных датчика. Самый простейший датчик состоит из ик-диода, который излучает в инфракрасном спектре и фототранзистор, который будет принимать сигнал с ик-диода. Принцип такой: когда перед датчиком нет преграды, то ик-лучи не попадают на фототранзистор и он не открывается. Если перед датчиком препятствие, тогда лучи от него отражаются и попадают на транзистор - он открывается и начинает течь ток. Недостаток таких датчиков в том, что они могут по-разному реагировать на различные поверхности и не защищены от помех — от посторонних сигналов других устройств датчик, случайно, может сработать. От помех может защитить модулирование сигнала, но пока мы этим заморачиватся не будем. Для начала, и этого хватит.


Прошивка робота

Чтобы оживить робота, для него нужно написать прошивку, то есть программу, которая бы снимала показания с датчиков и управляла двигателями. Моя программа наиболее проста, она не содержит сложных конструкций и всем будет понятна. Следующие две строки подключают заголовочные файлы для нашего микроконтроллера и команды для формирования задержек:

#include
#include

Следующие строки условные, потому что значения PORTC зависят от того, как ты подключил драйвер двигателей к своему микроконтроллеру:

PORTC.0 = 1; PORTC.1 = 0; PORTC.2 = 1; PORTC.3 = 0; Значение 0xFF означает, что на выходе будет лог. «1», а 0x00 - лог. «0». Следующей конструкцией мы проверяем, есть ли перед роботом препятствие и с какой оно стороны: if (!(PINB & (1<

Если на фототранзистор попадает свет от ик-диода, то на ноге микроконтроллера устанавливается лог. «0» и робот начинает движение назад, чтобы отъехать от препятствия, потом разворачивается, чтобы снова не столкнуться с преградой и затем опять едет вперёд. Так как у нас два датчика, то мы проверяем наличие преграды два раза - справа и слева и потому можем узнать с какой стороны препятствие. Команда «delay_ms(1000)» указывает на то, что пройдёт одна секунда, прежде чем начнёт выполняться следующая команда.

Заключение

Я рассмотрел большинство аспектов, которые помогут тебе собрать твоего первого робота. Но на этом робототехника не заканчивается. Если ты соберёшь этого робота, то у тебя появится куча возможностей для его расширения. Можно усовершенствовать алгоритм робота, как например, что делать, если препятствие не с какой-то стороны, а прямо перед роботом. Так же не помешает установить энкодер - простое устройство, которое поможет точно располагать и знать расположение твоего робота в пространстве. Для наглядности возможна установка цветного или монохромного дисплея, который может показывать полезную информацию - уровень заряда аккумулятора, расстояние до препятствия, различную отладочную информацию. Не помешает и усовершенствование датчиков - установка TSOP (это ик-приёмники, которые воспринимают сигнал только определённой частоты) вместо обычных фототранзисторов. Помимо инфракрасных датчиков существуют ультразвуковые, стоят подороже, и тоже не лишены недостатков, но в последнее время набирают популярность у роботостроителей. Для того, чтобы робот мог реагировать на звук, было бы неплохо установить микрофоны с усилителем. Но по-настоящему интересным, я считаю, установка камеры и программирование на её основе машинного зрения. Есть набор специальных библиотек OpenCV, с помощью которых можно запрограммировать распознавание лиц, движения по цветным маякам и много всего интересного. Всё зависит только от твоей фантазии и умений.

Список компонентов:

    ATmega16 в корпусе DIP-40>

    L7805 в корпусе TO-220

    L293D в корпусе DIP-16 х2 шт.

    резисторы мощностью 0,25 Вт номиналами: 10 кОм х1 шт., 220 Ом х4 шт.

    конденсаторы керамические: 0.1 мкФ, 1 мкФ, 22 пФ

    конденсаторы электролитические: 1000 мкФ х 16 В, 220 мкФ х 16В х2 шт.

    диод 1N4001 или 1N4004

    кварцевый резонатор на 16 МГц

    ИК-диоды: подойдут любые в количестве двух штук.

    фототранзисторы, тоже любые, но реагирующие только на длину волны ик-лучей

Код прошивки:

/***************************************************** Прошивка для робота Тип МК: ATmega16 Тактовая частота: 16,000000 MHz Если у тебя частота кварца другая, то это нужно указать в настройках среды: Project -> Configure -> Закладка "C Compiler" *****************************************************/ #include #include void main(void) { //Настраиваем порты на вход //Через эти порты мы получаем сигналы от датчиков DDRB=0x00; //Включаем подтягивающие резисторы PORTB=0xFF; //Настраиваем порты на выход //Через эти порты мы управляем двигателями DDRC=0xFF; //Главный цикл программы. Здесь мы считываем значения с датчиков //и управляем двигателями while (1) { //Едем вперёд PORTC.0 = 1; PORTC.1 = 0; PORTC.2 = 1; PORTC.3 = 0; if (!(PINB & (1<О моём роботе

В данный момент мой робот практически завершён.


На нём установлена беспроводная камера, датчик расстояния (и камера и этот датчик установлены на поворотной башне), датчик препятствия, энкодер, приёмник сигналов с пульта и интерфейс RS-232 для соединения с компьютером. Работает в двух режимах: автономном и ручном (принимает сигналы управления с пульта ДУ), камера также может включаться/выключаться дистанционно или самим роботом для экономии заряда батарей. Пишу прошивку для охраны квартиры (передача изображения на компьютер, обнаружение движений, объезд помещения).

Робот – самостоятельное и, часто, автономное устройство, работающее по внутренней программе. Почти живое существо, только с электронными мозгами. Роботы могут многое, но, все-таки не более того, что в них заложено их создателем.

Насмотревшись видео про роботов, решил сам попробовать сделать робота из простой игрушки. Что для этого нужно? Для начала сама игрушка. (отберите у вашего ребенка, пока не сломал). От самой игрушки зависит то, как будет выглядеть робот и что он сможет делать. Я взял простой трактор с дистанционным управлением King Force 300 ( при изготовлении робота ни один ребенок не пострадал)

Конечно, это будет не человеко-подобный робот, но трактор все-таки должен самостоятельно ездить и еще радостно пищать по поводу и без повода. Видео в конце.
При выборе игрушки для роботизации важно уточнить сколько у нее двигателей на колесах. У некоторых дешевых моделей обе гусеницы управляются одним мотором, что не позволит трактору маневрировать, а езда вперед-назад – не интересна. Китайцы как всегда сделали одноразовую вещь, поэтому для нормальной работы игрушку пришлось пришлось немного после чего не страшно уже ее роботизировать. Есть уверенность, что она не отбросит колеса прямо сразу, а немного поездит на радость мне и детям.

Рожденный ездить – летать не может. Т.е. наш робот будет перемещаться вперед-назад, вправо-влево. И еще дрыгать ковшом в качестве бонуса. Изначально у King Force 300 есть еще и плуг, но он управляется тем же мотором, что и ковш и к тому же занимает ценное пространство сзади, куда я планировал поставить инфракрасный бампер, поэтому плуг пришлось зверски ампутировать. Но шурупы пошли на прикручивание выключателя, что тоже хорошо.

Т.е в машинке всег три мотора и и нам нужно управлять двумя двигателями на движение, каждый из которых должен вращаться вперед и назад и одним двигателем на подъем ковша, который должен вращаться только в одну сторону.
Если нужно включить-выключить двигатель – это реализуется просто на мощном транзисторе, но если нужно менять его полярность, то здесь без специальной схемы не обойтись. Либо реализовывать самому так называемый H-bridge, либо купить готовый драйвер двигателей.
Магазины деталей для роботов изобилуют разными готовыми платами (шилдами), который можно купить и быстро собрать в единое устройство, но здесь нужно соблюдать баланс между ценой и трудоемкостью изготовления такой платы.

Вместо покупки инфракрасного датчика рублей эдак за 500 можно спаять на простейшей макетной плате пару транзисторов и светодиодов и получить тоже самое только в десять раз дешевле, особенно, если датчиков хотите сделать несколько. В итоге я купил этот драйвер двигателей и этот ультразвуковой дальномер HC-SR04, а материнскую плату робота и инфракрасный бампер спаял на простой макетной плате просто проводками без использования травления хлорным железом и т.п. радостей. Единственное, что паяльник должен быть с тонким жалом, чтобы паять колодки микросхемы. Сначала хотел использовать беспаечную макетную плату, но все-таки решил запаять, чтобы меньше отваливались провода.
Кстати, отлично для разводки такой платы подходят провода от витой пары. Медные, в меру жесткие и хороши для пайки. Думаю, у каждого найдется метр-другой остатков витой пары для такого рода развлечений. Материнскую плату готовую не брал, чтобы сэкономить место внутри трактора. Туда много не поместится, поэтому максимально неаккуратно распаял сам. Душераздирающее зрелище перепутанных проводов можно посмотреть на видео. В последствие оказалось, что провода еще и помехи друг другу дают, особенно те, которые идут к двигателям.
Чтобы можно было собирать-разбирать устройство пришлось сделать все датчики на разъемах.

Остался главный вопрос – насчет мозгов робота. Всеми этими моторчиками нужно как-то управлять. Компьютер великоват, да и не влезет он в трактор. Поэтому берем максимально простой вариант. Один из клонов Ардуино. Их много разных по цене и размеру. Это хотя это и не лучший контроллер, не самый быстрый и в нем не слишком много возможностей, но программируется легко, много примеров как что сделать, есть готовые библиотеки работы с дальномером и инфракрасным приемником, поэтому для нашей задачи Ардуино вполне достаточен.
Arduino Nano очень даже компактный вариант, чтобы поставить внутрь трактора. У меня был клон Carduino Nano V.7 поэтому использовал его, кстати, у этой платки есть особенность – выход SPK, куда можно подключить наш ковш прямо без всяких драйверов двигателей и дополнительных транзисторов. При этом он завязан внутри через транзистор на 11 цифровой порт. Так что посмотрите по схеме транзистор нарисован снаружи, а на самом деле двигатель подключен к выходу SPK и использует внутренний транзистор.

Питание. Ардуино питается от +5 вольт. У нас двигатели воспринимают что-то около 6 вольт, если быть абсолютно точными, то в пульте у нас четыре батарейки AA, они по 1.5 вольта, никаких дополнительных схем не увидел, следовательно на двигатели подается прямиком 6 вольт – это радует, поскольку не нужно уменьшать-увеличивать напряжение с батареек. Я планирую питать схему от четырех аккумуляторов. Они 1.2 вольта, следовательно в итоге на схему пойдет 4.8 – достаточно для нормального питания Ардуино без дополнительных стабилизаторов и ограничителей, для двигателей тоже пойдет.

Для простого управления подключил приемник инфракрасного излучения фактически теперь у трактора есть инфракрасный пульт дистанционного управления и куча кнопок.

Всякие гребенки, батарейные отсеки, конденсаторы-резисторы покупал в чип-дипе Если заказывать через Интернет, то цена в общем нормальная, но в розницу там совершенно безумные цены. Но можно купить практически все детали в одном месте. А вот здесь купил макетную плату.
И еще несколько деталек.

После распайки основная проблема была в том, что Ардуина очень чувствительна к помехам. Поскольку двигатели явно щеточные, то создают сильные помехи при работе, пришлось дополнительно паять большое количество конденсаторов 0.1 мкф везде, где только можно. При этом двигатель ковша сильно влиял на дальномер, пришлось даже ставить дополнительную катушку-фильтр на двигатель ковша (выпаял из сгоревшей энергосберегающей лампы), а на дальномер кроме конденсаторов поставить ферритовый фильтр на питающий провод. У меня изначально была идея использовать дальномер как датчик поднятия и опускания ковша. Поскольку ковш заслоняет дальномер в нижнем состоянии и открывает в поднятом, то можно останавливать подъем когда дальномер резко изменил показатели. Поэтому пришлось бороться с помехами. Дальномер уж слишком близко стоит рядом с двигателем, да и разводка проводами способствует наводкам проводов друг на друга.

Двигатели колес сильно влияли вообще на все. При старте вперед Ардуина зависала. Кстати, назад ехала нормально. Что очень похоже на помеху по питанию в одну сторону двигатели мало влияли, а в другую все зависало. Пришлось в итоге от двигателей к драйверу двигателей провода заменить на экранированные, экран присоединить к минусу питания. Питание и землю сделать звездой и дополнительно на питание инфракрасного датчика поставить резистор 100 ом, который тоже немного экранирует помехи, конечно, не так как катушка, но все-таки. По хорошему каждый вывод двигателя нужно через конденсатор выводить на землю, чтобы сбрасывать помехи, но у меня просто места небыло для дополнительных конденсаторов, просто стоят параллельно. Но экранированный провод значительно уменьшил влияние двигателей на схему. Ниже схема того что получилось. Как это все работает можно посмотреть на видео.

Одним из очень трудоёмких и увлекательных занятий является постройка собственного робота.

Каждый, от подростка до взрослого, мечтает сделать или маленького и симпатичного, или большого и многофункционального робота, сколько людей столько различных модификаций робототехники. А вы хотите сделать робота?

Перед таким серьёзным проектом следует прежде убедиться в своих возможностях. Построение робота занятие не из дешевых и не самых простых. Подумайте, какого робота вы хотите сделать, какие функции он должен выполнять, возможно, это будет просто декоративный робот из старых деталей или это будет полнофункциональный робот со сложными, двигающимися механизмами.

Я встречал много народных умельцев, создающих декоративных роботов из старых, отработавших свой век механизмов, таких как часы, будильники, телевизоры, утюги, велосипеды, компьютеры и даже автомобили. Эти роботы делаются просто для красоты, они, как правило, оставляют очень яркие впечатления, особенно они, нравятся детям. Подросткам вообще интересны роботы как нечто загадочное, ещё неизведанное.

Детали декоративных роботов крепятся различными способами: на клею, сваркой, на винтах. В таком занятии лишних деталей не бывает в ход идут любые детали, от маленькой пружинки до самого большого болта. Роботы могут быть маленькими, настольными, а некоторые умельцы умудряются сделать декоративных роботов в человеческий рост.

Намного сложнее и не менее интересно сделать действующего робота. Не обязательно робот должен быть похож на человека, это может быть консервная банка с рожками и гусеницами:) тут можно проявлять фантазию до бесконечности.

Раньше роботы были в основном механические, все движения контролировались сложными механизмами. Сегодня большинство грубых механических узлов можно заменить на электрические схемы, а «мозгом» робота может быть всего одна микросхема, в которую через компьютер вводят нужные данные.

Сегодня компания «Лего» выпускает специальные наборы для конструирования роботов, пока такие конструкторы стоят дорого и доступны не всем.

Лично мне интересно сделать робота своими руками из подручных материалов. Самая большая проблема, возникающая при строительстве, это нехватка знаний в области электрики. Если по механике можно ещё что-то сделать без проблем, то с электрическими схемами дела обстоят сложнее, часто требуется совместить несколько разных электрических узлов, тут и начинаются сложности, но всё это поправимо. При создании робота могут возникнуть проблемы с электродвигателями, хорошие моторчики стоят дорого, приходится разбирать старые игрушки, это не очень удобно. Так же стали дефицитными многие радиодетали, всё больше техники делается на сложных микросхемах, а тут нужны серьёзные знания. Несмотря на все трудности многие из нас продолжают создавать удивительных роботов для самых разных целей. Роботы могут стирать, убирать пыль, чертить, двигать предметы, веселить нас или просто украшать рабочий стол.

На сайте я периодически буду публиковать фотографии своих новых роботов, если вас тоже интересует эта тема, то обязательно присылайте свои истории с фотографиями или напишите о своих изобретениях на форуме.

Как из разных материалов сделать робота в домашних условиях без соответствующего оборудования? Подобные вопросы все чаще стали появляться на различных блогах и форумах, посвященных изготовлению всевозможных приборов своими руками и робототехнике. Конечно же, сделать современного, многофункционального робота - практически невыполнимая задача в домашних условиях. Но сделать простейшего робота на одной микросхеме драйвера и используя несколько фотоэлементов вполне возможно. Сегодня не трудно найти в интернете схемы с подробным описанием этапов изготовления мини-роботов, умеющих реагировать на источники освещения и препятствия.

Получится весьма шустрый и мобильный робот, который будет прятаться в темноту, или двигаться на свет, или бежать от света, или же передвигаться в поисках света в зависимости от способа соединения микросхемы с моторами и фотоэлементами.

Можно даже добиться того, что Ваш сообразительный робот будет следовать только по светлой или, наоборот, темной линии,а можно сделать так, что мини-робот будет следовать за Вашей рукой - достаточно всего лишь добавить несколько ярких светодиодов в его схему!

На самом деле сделать несложного робота своими руками может даже новичок, который только начинает осваивать это ремесло. В этой статье мы рассмотрим вариант самодельного робота, реагирующего на препятствия и объезжающего их.

Перейдем сразу к делу. Для того,чтобы сделать домашнего робота,нам понадобятся следующие детали,которые вы без труда найдете под рукой:

1. 2-е батарейки и корпус под них;

2. Два моторчика (1,5 вольт каждый);

3. 2-а SPDT выключателя;

4. 3-и скрепки;

4. Шарик из пластика с отверстием;

5. Небольшой кусок одножильного провода.

Этапы изготовления домашнего робота:

1. Кусок провода нарезаем на 13 частей по шесть сантиметров и каждый с обеих сторон оголяем на 1 см.

Паяльником присоединяем к SPDT выключателям по 3 провода,а к моторчикам - по 2 провода;

2. Теперь берем корпус для батареек,с одной стороны которого от него отходят два разноцветных провода (скорее всего - черного и красного цветов). Нам нужно припаять еще один провод к другой стороне корпуса.

Теперь нужно развернуть корпус для батареек и приклеить оба SPDT выключателя к стороне с припаянным проводом в форме латинской буквы V;

3. После этого по обе стороны корпуса надо приклеить моторчики таким образом,чтобы они вращались вперёд.

Затем берем большую скрепку и разгибаем ее. Протаскиваем разогнутую скрепку через сквозное отверстие пластикового шарика и распрямляем концы скрепки параллельно друг к другу. Приклеиваем концы скрепки к нашей конструкции;

4. Как сделать домашнего робота так,чтобы он действительно мог объезжать препятствия? Важно спаять все установленные провода так,как изображено на фото;

5. Делаем антенны из разогнутых скрепок и приклеиваем их к SPDT выключателям;

6. Осталось вставить батарейки в корпус и домашний робот начнет движение, объезжая препятствия на своем пути.

Теперь Вы знаете, как сделать домашнего робота,который умеет реагировать на препятствия.

Как вы можете сами сделать робота с определенными принципами поведения? Целый класс подобных роботов создается с помощью BEAM-технологии, типичные принципы поведения которых основаны на так называемой "фоторецепции". Реагируя на изменение интенсивности освещения, такой мини-робот движется медленнее или,наоборот, быстрее (фотокинезис).

Для изготовления робота, движение которого направлено от света или к свету и обусловлено реакцией фототаксиса, нам понадобятся два фотосенсора. Реакция фототаксиса будет проявляться следующим образом: если свет попадает на один из фотосенсоров BEAM-робота,то включается соответствующий электромотор и робот разворачивается в сторону источника света.

А затем свет попадет и на второй сенсор и тогда включается второй электромотор. Теперь мини-робот начинает движение к источнику света. Если свет опять попадает лишь на один фотосенсор, то робот вновь начинает разворачиваться к свету и продолжает двигаться к источнику, когда свет освещает оба сенсора. Когда свет не попадает ни на один сенсор,мини-робот останавливается.

Как сделать робота,следующего за рукой? Для этого наш мини-робот должен быть оснащен не только сенсорами,но и светодиодами. Светодиоды будут излучать свет и робот будет реагировать на отраженный свет. Если мы перед одним из сенсоров расположим ладонь,то мини-робот повернет в ее сторону.

Если Вы уберете ладонь чуть в сторону от соответствующего сенсора,то робот "послушно" последует за ладонью. Для того,чтобы отраженный свет четко улавливался фототранзисторами,выбирайте для конструирования робота яркие светодиоды (более 1000 мКд) оранжевого или красного цвета.

Не для кого не секрет, что ежегодно увеличивается количество инвестиций в сферу робототехники, создаются много новых поколений роботов, с развитием технологий производства появляются новые возможности создания и применения роботов,а талантливые мастера-самоучки продолжают удивлять мир своими новыми изобретениями в сфере робототехники.

Встроенные фотосенсоры реагируют на свет и направляются к источнику,а датчики распознают препятствие на пути и робот меняет направление движения. Для того, чтобы сделать такого простого робота своими руками, вовсе не надо иметь "семь пядей во лбу" и высшее техническое образование. Достаточно приобрести (а некоторые детали можно найти под рукой) все необходимые детали для создания робота и поэтапно соединять все микросхемы, сенсоры, датчики, провода и двигатели.

Давайте рассмотрим вариант робота из вибромоторчика от мобильника, плоской батарейки, двустороннего скотча и... зубной щетки. Для того, чтобы начать делать этого простейшего робота из подручных средств, возьмите свой старый, ненужный мобильный телефон и извлеките из него вибромоторчик. После этого возьмите старую зубную щетку и отрежьте лобзиком головку.

На верхнюю часть головки зубной щетки клеем кусочек двустороннего скотча и сверху - вибромоторчик. Осталось только обеспечить мини-робота электропитанием,установив рядом с вибромоторчиком плоскую батарейку. Все! Наш робот готов - за счет вибрации робот будет двигаться на щетинках вперед.

♦ МАСТЕР-КЛАСС ДЛЯ "ПРОДВИНУТЫХ САМОДЕЛКИНЫХ": Нажмите на фото

♦ ВИДЕО УРОКИ ДЛЯ НАЧИНАЮЩИХ:

Сделать самый простой робот под силу даже тем, кто только взял в руки паяльник.

Преимущественно наш робот (в зависимости от конструкции) будет бегать на свет либо наоборот убегать от него, бежать вперед в поисках луча света или же пятиться как крот назад.

Для нашего будущего «искусственного интеллекта» понадобятся:

  1. Микросхема L293D
  2. Маленький электромотор М1 (его можно вытащить из игрушечных автомобилей)
  3. Фототранзистор и резистор с номиналом 200 Ом.
  4. Провода, батарейка и, конечно же, сама платформа, где это все будет размещаться.

Если в конструкцию добавить еще парочку ярких светодиодов, то легко можно добиться, того, что робот просто будет бегать за рукой или даже следовать по светлой или темной линии. Наше создание будет типичным представителем роботов класса BEAM. Принцип поведения таких роботов заключается на «фоторецепции», то есть свет, в данном случае, будет выступать в качестве источника информации.

Наш робот будет двигаться вперед, при попадании на него луча света. Такое поведение устройства называется «фотокинезисом» – ненаправленное увеличение или уменьшение подвижности в ответ на изменение уровня освещенности.

В нашем устройстве, как было сказано выше, использовался фототранзистор n-p-n структуры – PTR-1 в качестве фотосенсора. Здесь можно использовать не только фототранзистор, но и фоторезистор или фотодиод, так как принцип работы у всех элементов одинаковый.

На рисунке сразу приведена монтажная схема робота. Если Вы еще не достаточно хорошо знакомы с техническими условными обозначениями, то, здесь исходя из этой схемы, несложно будет понять принципы обозначения и подсоединения элементов друг к другу.

GND . Провода, соединяющие различные элементы схемы с «землей» (отрицательный полюс источника питания), обычно на схемах не отображают полностью. Вместо этого рисуют маленькую черточку, обозначающую соединение с «землей». Иногда, рядом с черточкой пишут «GND» – от анг. слова «ground» – земля.

Vcc . Данное обозначение показывает, что через эту часть схема соединена с источником питания – Положительный полюс! Иногда на схемах вместо этих букв часто пишут номинал тока. В данном случае +5V.

Принцип действия робота.

При попадании на фототранзистор (на схеме он указан как PRT1) луча света, на выходе микросхемы INPUT1 появляется положительный сигнал, который заставляет мотор М1 – работать. И наоборот, когда луч света перестает освещать фототранзистор – сигнал на выходе микросхемы INPUT1 исчезает, следовательно, и мотор останавливается.

Резистор R1 в данной схеме предназначен компенсации, проходящего тока через фототранзистор. Номинал резистора 200 Ом – конечно можно сюда припаять резисторы и с другими показателями номиналов, но следует помнить, что от номинала будет зависеть чувствительность фототранзистора, а значит и работоспособность самого робота.

Если номинал резистора будет большим, то робот станет реагировать только на очень яркий луч света, а если небольшим – то и чувствительность будет намного выше.

Коротко говоря – не следует использовать в данной схеме резисторы с сопротивлением менее 100 Ом, иначе фототранзистор может просто-напросто перегреться и выйти из строя.

Цифровой и аналоговый мультиметры Проведение замеров Чтение схем: экранирование, заземление Чтение схем: лампы и фотоэлементы Ремонт электрического чайника Часы с проецированием изображения своими руками