Транспозиция фаз осуществляется обычно на опоре, редко в пролете. В качестве транспозиционной опоры используют, как правило, унифицированную анкерно-угловую опору,иногда промежуточную. [ ]

Транспозиция фаз линий электропередачи выполняется для снижения несимметрии напряжений и токов в электрической системе при нормальных режимах работы электропередачи и для ограничения мешающих влияний линий электропередачи на низкочастотные каналы связи.

Транспозиция фаз линий электропередачи выполняется для снижения несимметрии напряжений и токов в электрической системе при нормальных режимах работы электропередачи и для ограничения мешающих влияний линий электропередачи на низкочастотные каналы связи. Транспозиция фаз предусматривается для В Л НО кв и выше длиной более 100 км. Длины циклов транспозиции выбираются в соответствии с конкретными условиями, но не более 300 км. На участках между ближайшими подстанциями целесообразно выполнять целое число циклов транспозиции, чтобы снизить по возможности несимметрию токов и напряжений на каждой из подстанций электрической системы. На (ВЛ с заходами на промежуточные подстанции при длине участков между подстанциями не более 100 км транспозиция проводов выполняется путем скрутки фаз у подстанций, в концевом пролете, на одной из опор В Л на подходе к подстанции. В сетях с компенсированной нейтралью (35 кв и ниже) рекомендуется выравнивание несимметрии емкостных токов выполнять путем изменения расположения фаз на опорах, отходящих от подстанции ВЛ. При наличии на участке линии двух параллельных цепей целесообразно выполнять на каждой из них транспозицию по одинаковой схеме и с одинаковым числом полных циклов. Взаимная транспозиция цепей усложняет эксплуатацию и обычно не требуется.

Чтобы избежать этого, прибегают к транспозиции фаз. [ ]

Аналогичное решение применяют на линейных опорах для транспозиции фаз проводов воздушных линий. Одностоечные порталы позволяют сократить затраты материалов на несущие конструкции. [ ]

При длине КЛ несколько километров необходимо производить транспозицию фаз одножильных кабелей для уменьшения наведенного напряжения в параллельных линиях связи. [ ]

При длине кабельной линии в несколько километров производится транспозиция фаз одножильных кабелей для уменьшения наведенного напряжения в параллельных линиях связи. [ ]

]

В электрических сетях до 35 кВ рекомендуется производить транспозицию фаз на подстанциях так, чтобы суммарные длины участков с различным чередованием фаз были примерно равны. [ ]

При длине кабельной линии несколько километров необходимо производить транспозицию фаз одножильных кабелей для уменьшения наведенного напряжения в параллельных линиях связи. [ ]

Собственная емкость фазного провода с при условии, что применена транспозиция фаз, должна вычисляться с обязательным учетом влияния земли в силу значительного расстояния между фазами разомкнутой линии, которое может заметно превышать высоту подвеса проводов над землей. [ ]

При большой длине кабельной линии (несколько километров) производится транспозиция фаз одножильных кабелей, благодаря чему уменьшается наведенное напряжение в параллельных линиях связи. Каждый кабель подпитывается маслом от отдельной группы баков, соединенных через коллектор. Для наблюдения за исправностью кабелей производится контроль за давлением масла в нем, который осуществляется при помощи электрических сигнальных манометров, показывающих давление в аппаратах подпитки, присоединенных к концевым муфтам. Схема сигнализации предусматривает световой и звуковой сигналы на пульте управления при отклонении давления в кабеле от нормированного. [ ]

Пример моделирования в программе ELCUT. Транспозиция проводов воздушной линии электропередачи.
Страница примера на сайте поддержки пользователей программы:
http://elcut.ru/advanced/transposition_r.htm. На этой странице даны файлы задачи и подробные результаты анализа данного примера.
Сайт www.elcut.ru содержит материалы для изучения программы и лёгкого старта в инженерных расчётах, Вы можете бесплатно скачать ELCUT Студенческий для решения простых задач.
Условия приобретения лицензии – для предприятий и льготные - для ВУЗов.
Техническая помощь по адресу [email protected]. Обращайтесь, будем рады помочь освоить программу.


Участок воздушной линии электропередачи класса 110 кВ, длиной 120 километров.
Тип задачи: Плоская задача магнитного поля переменных токов.
Геометрия: Опора ЛЭП. Все размеры в метрах. Схема транспозиции. Длина линии l = 120 км
Исходные данные: Номинальное напряжение линии (действующее) Uл = 110 кВ
Rнагр = 100 Ом, Lнагр = 0.23 Гн.
Задание: Определить индуктивность фазы линии электропередачи.

Решение:
Согласно ПУЭ, на ВЛ 110-500 кВ длиной более 100 км для ограничения несимметрии токов и напряжений должен выполняться один полный цикл транспозиции. Шаг транспозиции по условию влияний на линии связи не нормируется. При этом транспозиция должна осуществляться так, чтобы суммарные длины участков ВЛ с различным чередованием фаз были примерно равны.
Длина нашей линии составляет 120 км, и на протяжении всего участка электропередачи происходит полный цикл транспозиции проводов линии. Расстояние между точками транспозиции (транспозиционными опорами) составляет 40 км.
Для учета различного расположения отрезков линии они все были добавлены в модель. Участки были изолированы по магнитному полю, и не создавали помех друг другу, но были связаны в цепи. Таким образом в единой задаче удалось учесть различное распределение проводников.
Полное сопротивление линии складывается из сопротивлений отдельных участков и может быть найдено как падение напряжения на отдельный участках, деленное на ток:
Zл = (U1 + U2 + U3) / I.
Cопротивление линии может быть представлено, как сумма активного сопротивления (R) и индуктивного сопротивления (Xл):
Zл = Rл + j Xл.
Для определения индуктивности линии воспользуемся законом Ома и соотношением между индуктивным сопротивлением и индуктивностью:
L = Xл / 2 π f,
где Xл - индуктивное сопротивление фазы линии;
f - частота тока.

Результаты расчета: Таблица измеренных токов и напряжений для фазы А.

Загрузить файлы задачи: http://elcut.ru/examples/transposition.zip Сопротивление ZC, Ом
Посмотреть подробно геометрию и результаты: http://elcut.ru/advanced/transposition_r.htm
Транспозиция проводов воздушной линии электропередачи

Видео Транспозиция проводов воздушной линии электропередачи. Пример моделирования в ELCUT канала elcut2010

Изобретение относится к области железных дорог, электрифицированных на переменном токе, и направлено на обеспечение нормального функционирования высоковольтных линий с изолированной нейтралью в условиях интенсивного воздействия электромагнитного поля контактной сети железной дороги. Устройство транспозиционной геометрии проводов воздушной высоковольтной линии содержит: опоры линии, кронштейны для крепления в ряд двух изоляторов по углам основания условного пространственного равностороннего треугольника, стороны которого увеличены в минимально допустимый размер сближения. Для симметрирования погонных электрических параметров линии применена шестишаговая транспозиция проводов - фаз в цикле с поворотом проводов - фаз на 60° на каждой опоре и вращением проводов по всей длине линии. Геометрическое расположение проводов на опорах по углам условного пространственного равностороннего треугольника выполнено с помощью чередующихся по высоте и разных по длине кронштейнов с подвесными изоляторами, на которых крепятся провода - фазы. Технический результат заключается в снижении электромагнитного воздействия контактной сети железной дороги на функционирование высоковольтных линий с изолированной нейтралью. 2 ил.

Рисунки к патенту РФ 2460654

Изобретение относится к аппаратуре, обеспечивающей нормальное функционирование высоковольтных линий с изолированной нейтралью, а также линий, использующих систему два - провода заземленный провод (ДПЗП патент от 10.11.2006 г. № 2286891) в условиях интенсивного воздействия электромагнитного поля контактной сети железной дороги. Снижение несимметрии треугольника питающих напряжений потребителей систем с изолированной нейтралью и ДПЗП от электромагнитного влияния контактной сети зависит от геометрии расположения проводов на опорах. Задача заключается в том, чтобы влияющее электромагнитное поле оказывало одинаковое воздействие на все три провода. Тогда уровни наведенных напряжений как от магнитной, так и от электрической составляющих, в точках подключения потребителей, будут одинаковы, и разности потенциалов по фазам линии от влияний будут стремиться к нулю. Соответственно, на самом потребителе будет только напряжение питания. Поставленную цель можно достигнуть, создав одинаковое расстояние от каждого из проводов линии до эквивалента влияния контактной сети. Под эквивалентом влияния контактной сети следует понимать геометрическую расположенность всех токоведущих элементов (контактный провод, несущий трос, струнки и т.д.) и, кроме того, такую же геометрию от параллельного - второго пути. Вся эта геометрия трех проводов должна сводиться в условную геометрическую точку. Если все три провода будут параллельно разнесены в пространстве, то такая задача конструктивно не решаема. Однако если свести три провода в единую геометрическую точку влияния, то можно получить положительный результат. Транспозиция проводов ВЛ обеспечивает выравнивание индуктивностей и емкостей отдельных фаз, уменьшение влияния на соседние параллельные воздушные линии, тем самым обеспечивая качественную передачу электроэнергии к потребителю. Транспозиция заключается во взаимном обмене местами проводов различных фаз на протяжении всей линии. Для этого вся длина линии делится на части, число которых кратно трем, и каждая фаза, переходя с одного участка на другой, меняется местами с другими фазами, что описано в учебнике: «Электроснабжение нетяговых потребителей железных дорог». Ратнер М.П., Могилевский Е.Л. - М.: Транспорт, 1985 г. Устройство принято в качестве прототипа. В прототипе применяют длину шага транспозиции 3 км. Три шага транспозиции (при каждом шаге смещение проводов на 120°) обеспечивает через 360° полное перекрещивание проводов, что составляет цикл транспозиции.

Транспозиция проводов выполняется на специальной транспозиционной опоре или в пролете (промежуток между опорами), подходящий к транспозиционной опоре. Если транспозиция выполняется в пролете, то в месте крепления проводов на опоре, для защиты их от перехлеста, необходимо в два раза увеличить минимально допустимое расстояние между проводами. В остальных пролетах линии (3 км) провода идут параллельно друг другу до следующего шага транспозиции. Между шагами транспозиции электрические параметры несимметричны. К основным погонным электрическим параметрам линии, влияющим на качества передачи электроэнергии, относятся погонная индуктивность, погонная емкость, погонная проводимость и коэффициент распространения.

Погонная индуктивность линий обусловлена магнитным потоком, пронизывающим рамку, образованная проводами цепи, а также магнитным потоком внутри проводов цепи.

Из этого следует, что внешняя индуктивность не зависит от частоты и определяется геометрическими параметрами самой и влияющей линий. Если шаг транспозиции достаточно значителен и составляет 3 км, а цикл 9 км, то на протяжении 9 км происходит постоянное значительное изменение внешней индуктивности по длине всей линии, а косое сближение дополнительно вносит несимметрию электрических погонных параметров. Разброс параметров внешней индуктивности по длине линии отрицательным образом сказывается на качестве электроэнергии у потребителей, подключенных к одной и той же линии.

Симметрирование погонных электрических параметров, в основном, выполняется в кабелях связи, а также силовых кабелях электропитания, которых принимаем в качестве аналога ( Теория передачи сигналов электросвязи . Ю.С.Шинаков, Ю.М.Колодяжный - М.; Радио и связь, 1989). Симметричная кабельная цепь представляет собой жилы, скрученные в звездную четверку по всей длине кабеля. Благодаря скрутке в звездную четверку, каждый из проводов имеет одинаковую емкость по отношению к земле и к любому другому проводу другой цепи. Погонная индуктивность в кабельных линиях по отношению к воздушным линиям значительно меньше за счет уменьшения внешней индуктивности.

В симметричных кабельных линиях основным преимуществом является симметричность погонных электрических параметров. Кроме того, для более точной подгонки этих параметров применяют еще индивидуальное трехэтапное симметрирование. Однако существенным недостатком кабельных линий, из-за малого расстояния между жилами, является большая погонная емкость по отношению к воздушным линиям. Этот недостаток влияет на переходные коммутационные процессы и, тем самым, ограничивает длину непрерывных кабельных линий (длина силовых непрерывных кабельных линий не более 60 км).

Предлагаемое устройство транспозиционной геометрии проводов для снижения электромагнитного воздействия максимально использует все преимущества как воздушных, так и кабельных линий. То есть предлагаемое устройство использует симметрию погонных электрических параметров кабелей, но с малой погонной емкостью, которой обладают воздушные проводные линии.

Цель изобретения - создание устройства транспозиционной геометрии проводов воздушной высоковольтной линии электроснабжения с повышенной симметрией погонных электрических параметров линии находящейся в условиях интенсивного воздействия электромагнитного поля контактной сети железных дорог, электрифицированных на переменном токе.

Погонное равенство всех электрических параметров проводов - фаз линии достигается путем применения транспозиции трех проводов на каждом межпролетном пространстве по всей длине линии, с применением не трехшаговой межпролетной транспозиции с поворотом на 120° (требующей двукратного увеличения допустимого безопасного расстояния между проводами и имеющей на основании этого расстояние между шагами 3 км), а шестишагового поворота на 60° на каждой опоре. Шестишаговый поворот проводов на 60° по окружности на каждой опоре (показанный на расчетной схеме фиг.1 и пространственной схеме фиг.2), который увеличивает расстояние между проводами в опорных точках по отношению к середине пролета лишь на коэффициент 1.15, позволяя использовать стандартизированные конструкции кронштейнов и опор, тем самым сохраняя нормируемые габариты и разгружая опору до стандартных значений нагрузки, а также позволяя выполнять транспозиционный шаг на каждом пролете без пропусков. Эта транспозиционная геометрия проводов дает возможность применить ее не только для напряжений 6 (10) кВ, но и с более высокими значениями напряжений 27,35 кВ и даже выше. Применение расположения проводов на опорах по углам условного пространственного равностороннего треугольника (см. пунктиром фиг.1) позволяет получить высокий уровень симметрирования погонных электрических параметров линии.

В устройстве имеются: опоры линии - 1; кронштейны для крепления двух изоляторов в ряд по углам основания условного пространственного равностороннего треугольника, стороны которого увеличены в 1.15D - нормированного минимально допустимого размера сближения - 2; кронштейны для крепления одного изолятора на третьем угле условного пространственного равностороннего треугольника - 3; подвесные гирлянды изоляторов - 4; провода - фазы высоковольтной трехфазной линии - 5, 6 и 7; эквивалент влияющей контактной сети - 8.

Устройство работает следующим образом. Электромагнитное поле контактной сети 8 облучает своими магнитной и электрической составляющими провода - фазы 5, 6 и 7.

Эти провода 5, 6 и 7 за счет своего постоянного вращения вдоль всей длины линии имеют одинаковые погонные электрические параметры. Соответственно, они получают одинаковое воздействие от обоих составляющих электромагнитного поля контактной сети 8. За счет соразмерности расстояния до эквивалента контактной сети 8 обеспечивается равенство наведенных электрических величин на всех трех проводах 5, 6, 7. В результате на подключенных к этой линии потребителях взаимно уничтожаются магнитная и электрическая составляющие электромагнитного поля контактной сети 8. Выполненный на каждой опоре 1 условный пространственный равносторонний треугольник с увеличенными сторонами в 1.15 (для невозможности перехлеста проводов), образованный с помощью чередующихся по высоте и разных по длине кронштейнов 2 и 3 с подвесными изоляторами 4, на которых крепятся провода - фазы 5, 6 и 7, дополнительно сближает равенство погонных электрических параметров линии.

Предлагаемое устройство транспозиционной геометрии проводов воздушной высоковольтной линии электроснабжения с повышенной симметрией погонных электрических параметров линии находящейся в условиях интенсивного воздействия электромагнитного поля контактной сети железных дорог, электрифицированных на переменном токе, обеспечивает высокое качество поставляемой электроэнергии потребителям и снимает конструктивный предел использования для более высоких напряжений.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Устройство транспозиционной геометрии проводов воздушной высоковольтной линии электроснабжения с повышенной симметрией погонных электрических параметров линии, находящейся в условиях интенсивного воздействия электромагнитного поля контактной сети железных дорог, электрифицированных на переменном токе, содержащее: контактную сеть переменного тока, излучающую электромагнитное поле и высоковольтную линию с транспозицией проводов, находящуюся в зоне этого электромагнитного поля, отличающееся тем, что для симметрирования погонных электрических параметров линии применяется шестишаговая транспозиция проводов - фаз в цикле с их поворотом на 60° (на каждой опоре), их вращением (по всей длине линии) и их геометрическим расположением на опорах по углам условного пространственного равностороннего треугольника, выполненного с помощью чередующихся по высоте и разных по длине кронштейнов с подвесными изоляторами, на которых крепятся провода - фазы.

Расположение проводов на опорахТранспозиция проводов

Количество проводов на ВЛ

Опоры одноцепных ВЛ напряжением
свыше 1 кВ рассчитаны на подвеску трёх
фазных проводов, то есть одной цепи.
Опоры двухцепных ВЛ напряжением свыше
1 кВ рассчитаны на подвеску 6 проводов, то
есть двух цепей.

Расположение проводов на опорах ВЛ (ГТ – грозозащитный трос)

а), б) – подвес треугольником, Линии от 35 кВ снабжают
в) – горизонтально, г) – елкой, грозозащитными тросами,
д) – бочкообразно
которые размещают над
проводами,.

Транспозиция трехфазной линии

При всех способах расположения, кроме треугольника провода
каждой цепи располагаются несимметрично один по
отношению к другому это приводит к индуктивному
сопротивлению фаз и емкостей между ними. Для устранения
этого влияния на линиях ВЛ 35 кВ и выше применяют
транспозицию проводов, то есть изменяют взаимное
расположение фаз на опорах.

Пример транспозиции на опорах, ее полный цикл

Выполнение транспозиции проводов с полевой стороны

Узел транспозиции

Схема проводов и опор при транспозиции

1,2,3 – опоры;
l – длина пролета;
А,В,С – фазы проводов

Основные правила транспозиции

1.Пролет транспозиции уменьшают на 25-30 %
2.Крепление проводов должно быть двойным
3.Схлестывание проводов не допускается
4.Расстояние между транспозициями проводов
ВЛ должно быть не более 3 км
5.Цикл транспозиции равен 9 км

Напряжением выше 1000 В применяют голые провода и тросы. Находясь на открытом воздухе, они подвергаются воздействиям атмосферы (ветер, гололед, изменение температуры) и вредных примесей окружающего воздуха (сернистые газы химических заводов, морская соль) и поэтому должны обладать достаточной механической прочностью и быть устойчивыми против коррозии (ржавления).

Раньше на воздушных линиях применялись медные провода, а теперь используют алюминиевые, сталеалюминевые и стальные, а в отдельных случаях и провода из специальных сплавов алюминия – альдрея и др. Грозозащитные тросы выполняются, как правило, из стали.

По конструкции различают:

А) многопроволочные провода из одного металла, состоящие (в зависимости от сечения провода) из 7; 19 и 37 скрученных между собой отдельных проволок (рис. 1, б);

б) однопроволочные провода, состоящие из одной проволоки сплошного сечения (рис. 1, а);

в) многопроволочные провода из двух металлов – стали и алюминия или стали и бронзы. Сталеалюминевые провода обычной конструкции (марки АС) состоят из стальной оцинкованной жилы (однопроволочной или скрученной из 7 или 19 проволок), вокруг которой расположена алюминиевая часть, состоящая из 6, 24 или более проволок (рис. 1, в).

Рис. 1. Конструкция проводов воздушных линий: а – однопроволочные провода; б – многопроволочные провода; в – сталеалюминевые провода.

Конструктивные расчетные данные голых алюминиевых и сталеалюминевых проводов находятся в ГОСТ 839-80.

Медные провода

Медные провода, изготовленные из твердотянутой медной проволоки, обладают малым удельным сопротивлением (r = 18,0 Ом × мм2/ км) и хорошей механической прочностью: предельное сопротивление разрыву sп = 36… 40 кгс/мм2, успешно противостоят атмосферным воздействиям и коррозии от вредных примесей в воздухе.

Медные провода маркируют буквой М с прибавлением номинимального сечения провода. Так, медный провод с номинальным сечением 50 мм2 обозначается М – 50.

Медь в настоящее время является дефицитным дорогостоящим материалом, поэтому в качестве проводов воздушных линий электропередачи практически не используется.

Алюминиевые провода

Алюминиевые провода отличаются от медных значительно меньшей массой, несколько большим удельным сопротивлением (r = 28,7…28,8 Ом × мм2/км) и меньшей механической прочностью: sп = 15,6 кгс/мм2 - для проводов из проволок марки АТ и sп = 16…18 кгс/мм2 из проволки Атп. Алюминиевые провода применяют главным образом в местных сетях. Малая механическая прочность этих проводов не допускает большого тяжения. Чтобы избежать больших стрел провеса и обеспечить требуемый минимальный габарит линии до земли, приходится уменьшить расстояние между опорами, а это удорожает линию.

Для повышения механической прочности алюминиевых проводов их изготовляют многопроволочными, из твердотянутых проволок. Хорошо перенося атмосферные воздействия, алюминиевые провода плохо противостоят воздействию вредных примесей воздуха. Поэтому для воздушных линий, сооружаемых вблизи морских побережий, соленых озер и химических предприятий, рекомендуются алюминиевые провода марки АКП, защищенные от коррозии (алюминиевые коррозионно-стойкие, с заполнением межпроволочного пространства нейтральной смазкой). Провода из алюминия маркируются буквой А с добавлением номинального сечения провода.

Стальные провода

Стальные провода обладают большой механической прочностью: предельное сопротивление при разрыве sп = 55…70 кгс/мм2. Стальные провода бывают как однопроволочными, так и многопроволочными.

Удельное электрическое сопротивление стальных проводов значительно выше, чем алюминиевых, и в сетях переменного тока оно зависит от величины тока, протекающего по проводу. Стальные провода применяют в местных сетях напряжением до 10 кВ при передаче сравнительно небольших мощностей, когда сооружение линий с алюминиевыми проводами менее выгодно.

Существенный недостаток стальных проводов и тросов – подверженность коррозии. Для уменьшения коррозии провода оцинковывают. Выпускаются две марки многопроволочных стальных проводов: ПС (провод стальной) и ПМС (провод омедненный стальной). Провода ПС имеют присадку меди до 0,2 %, а провода марки ПСО изготовляются диаметром 3; 3,5; 5 мм. Стальные многопроволочные грозозащитные тросы выпускаются марок С-35, С-50 и С-70.

Сталеалюминиевые провода

Сталеалюминевые провода имеют то же удельное сопротивление, что и алюминиевые провода равного им сечения, так как в электрических расчетах сталеалюминевых проводов проводимость стальной части не учитывается ввиду ее незначительности по сравнению с проводимостью алюминиевой части проводов.

Конструктивно стальные проволки составляют внутреннюю часть сталеалюминевого провода, а алюминиевые проволки – внешнюю. Сталь предназначена для увеличения механической прочности, алюминий является токопроводящей частью.

Выпускаются следующие марки сталеалюминевых проводов (ГОСТ 839-80):

АС – провод, состоящий из сердечника – стальных оцинкованных проволок, и одного или нескольких наружных повивов из алюминиевых проволок. Провод предназначается для прокладки на суше, кроме районов с загрязненным вредными химическими соединениями воздухом;

АСКС, АСКП – как и провод марки АС, но с заполнением стального сердечника (С) или всего провода (П) смазкой, противодействующей появлению коррозии проволок. Предназначен для прокладки на побережье морей, соленых озер и в промышленных районах с загрязненным воздухом;

АСК – такой же как и провод АСКС, но со стальным сердечником, изолированным полиэтиленовой пленкой. В маркировке провода после буквы А может стоять буква П, которая указывает, что провод повышенной механической прочности (например АпСК).

Сталеалюминевые провода всех марок выпускаются с разным отношением сечения алюминиевой части провода к сечению стального сердечника: в пределах 6,0…6,16 – для работы провода в средних по механической нагрузке условиях; 4,29…4,39 – усиленной прочности; 0,65…1,46 – особо усиленной прочности: 7,71…8,03 – облегченной конструкции и 12,22…18,09 – особо облегченные.

Провода облегченной конструкции применяют на вновь сооружаемых и реконструируемых линиях в районах, где толщина стенки гололеда не превышает 20 мм. Сталеалюминевые провода усиленной прочности рекомендуется применять в районах с толщиной стенки гололеда более 20 мм. Для осуществления больших пролетов на переходах через водные пространства и инженерные сооружения применяют провода особой прочности.

Для более полной характеристики сталеалюминевых проводов в обозначение марки проводов вводится номинальное сечение провода и сечение стального сердечника, например: АС – 150/24 или АСКС – 150/34.

Провода из альдрея

Провода из альдрея обладают примерно тем же электрическим сопротивлением, что и алюминиевые, но имеют большую механическую прочность. Альдрей представляет собой сплав алюминия с незначительными количествами железа (» 0,2 %), магния (» 0,7 %) и кремния (» 0,8 %); по корроизной стойкости он равен алюминию. Недостаток проводов из альдрея – их малая стойкость при вибрации.

Расположение проводов на воздушной линии

Провода на опорах воздушных линий можно располагать различными способами: на одноцепных линиях – треугольником или горизонтально; на двухцепных линиях – обратной елкой или шестиугольником (в виде «бочки»).

Расположение проводов треугольником (рис. 2 , а) применяется на линиях напряжением до 20 кВ включительно и на линиях напряжением 35…330 кВ с металлическими и железобетонными опорами.

Горизонтальное расположение проводов (рис. 2 , б) применятся на линиях напряжением 35…220 кВ с деревянными опорами. Такое расположение проводов является наилучшим по условиям эксплуатации, так как позволяет применять более низкие опоры и исключает схлестывание проводов при сбрасывании гололеда и пляске проводов.

На двухценных линиях провода располагают либо обратной елкой (рис. 2 , в), что удобно по условиям монтажа, но увеличивает массу опор и требует подвески двух защитных тросов, либо шестиугольником (рис. 2 , г).

Последний способ предпочтительнее. Он рекомендован к применению на двухценных линиях напряжением 35…330 кВ.

Для всех перечисленных вариантов характерно несимметричное расположение проводов по отношению друг к другу, что приводит к различию электрических параметров фаз. Для уравнения этих параметров применяют транспозицию проводов, т.е. последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу на различных участках линии. При этом провод каждой фазы проходит одну треть длины линии на одном, вторую – на другом и третью – на третьем месте (рис. 3 .).

Рис. 2. Расположение проводов и защитных тросов на опорах: а – треугольником; б – горизонтальное; в – обратной елкой; г – шестиугольником (бочкой).

Рис. 3

Грозозащитные тросы воздушных линий электропередачи

Грозозащитные тросы подвешивают выше проводов для защиты их от атмосферных перенапряжений. На линиях напряжением ниже 220 кВ тросы подвешивают только на подходах к подстанциям. При этом снижается вероятность перекрытия проводов линии вблизи подстанции. На линиях напряжением 220 кВ и выше тросы подвешиваются вдоль всей линии. Обычно используются тросы из стальных проволок.

Ранее тросы на линиях всех номинальных напряжений заземлялись наглухо на каждой опоре. Опыт эксплуатации показал, что в замкнутых контурах заземляющей системы – тросы – опоры появились токи. Они возникли вследствие действия ЭДС, наводимых в тросах путем электромагнитной индукции. При этом в ряде случаев в многократно заземленных тросах получились значительные потери электроэнергии, особенно в линиях сверхвысоких напряжений.

Исследования показали, что при подвеске тросов повышенной проводимости (сталеалюминиевых) на изоляторах тросы могут быть использованы в качестве проводов связи и в качестве токонесущих проводов для электроснабжения потребителей малой мощности.

Для обеспечения соответствующего уровня грозозащиты линий тросы при этом должны присоединяться к заземленным через искровые промежутки.

Мещеряков И. И.