Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией , параллельной базе эпюре, а эпюра М - наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок , равный значению этой силы, а на эпюре М -точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок , равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М - по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение M max или M min (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс - статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие - на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y - перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения - угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина .

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов М f от приложенной нагрузки и М 1 - от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где A f – площадь эпюры изгибающего момента М f от заданной нагрузки; y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М f ; EI x – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (A f *y c) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра М f должна быть разбита на простые фигуры(применяется так называемое "расслоение эпюры"), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент М х (рис. 1). Так как Q y =dM x /dz=0, то M x =const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент M х по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики

Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 2). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .

Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня.

Рис.1. Связь внутреннего усилия и напряжения

Рис.2. Модель чистого изгиба

Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями (индекс г в дальнейшем опускаем). При этом часть волокон находится в зоне растяжения (на рис. 2 это—нижние волокна), а другая часть—в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п—п), не меняющим своей длины, напряжения в котором равны нулю. Учитывая сформулированные выше предпосылки и полагая, что материал стержня линейно-упругий, т. е. закон Гука в этом случае имеет вид: , выведем формулы для кривизны нейтрального слоя (—радиус кривизны) и нормальных напряжений . Предварительно отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (M х =сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня (рис. 3, а ), нейтральный слой (п—п) описывается дугой окружности.

Рассмотрим призматический стержень в условиях прямого чистого изгиба (рис. 3, а) с поперечным сечением, симметричным относительно вертикальной оси Оу. Это условие не отразится на конечном результате (чтобы прямой изгиб был возможен, необходимо совпадение оси Оу с главной осью инерции поперечного сечения, которая и является осью симметрии). Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно.


а ) расчетная схема, б ) деформации и напряжения

Рис.3. Фрагмент чистого изгиба бруса

Рассмотрим вырезанный из стержня элемент длиной dz , который в масштабе с искаженными в интересах наглядности пропорциями изображен на рис. 3, б . Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным.

Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у:

Из подобия треугольников С00 1 и 0 1 ВВ 1 следует, что

Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений

Эта формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя и положение нейтральной оси Ох , от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы

Подставляя в это уравнение выражение (2)

и учитывая, что , получаем, что

Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси. Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения.

Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом (который легко может быть выражен через внешние силы и поэтому считается заданной величиной). Подставляя в уравнение связки выражение для. напряжений, получим:

и учитывая, что где J x —главный центральный момент инерции относительно оси Ох, для кривизны нейтрального слоя получаем формулу

Рис.4. Распределение нормальных напряжений

которая была впервые получена Ш. Кулоном в 1773 году. Для согласования знаков изгибающего момента М х и нормальных напряжений в правой части формулы (5) ставится знак минус, так как при M х >0 нормальные напряжения при y >0 оказываются сжимающими. Однако в практических расчетах удобнее, не придерживаясь формального правила знаков, определять напряжения по модулю, а знак ставить по смыслу. Нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси (рис. 4), т. е.

Здесь введена геометрическая характеристика , имеющая размерность м 3 и получившая название момента сопротивления при изгибе. Поскольку при заданном M х напряжения max ? тем меньше, чем больше W x , момент сопротивления является геометрической характеристикой прочности поперечного сечения изгибе. Приведем примеры вычисления моментов сопротивления для простейших форм поперечных сечений. Для прямоугольного поперечного сечения (рис. 5, а ) имеем J х =bh 3 /12,y max = h/2 и W x = J x /y max = bh 2 /6. Аналогично для круга (рис. 5,a J x =d 4 /64, y max =d/2 ) получаем W x =d 3 /32, для кругового кольцевого сечения (рис. 5, в), у которого

Прямой поперечный изгиб возникает в случае, когда все нагрузки приложены перпендикулярно оси стержня, лежат в одной плоскости и, кроме того, плоскость их действия совпадает с одной из главных центральных осей инерции сечения. Прямой поперечный изгиб относится к простому виду сопротивления и является плоским напряженным состоянием , т.е. два главных напряжения отличны от нуля. При таком виде деформации возникают внутренние усилия: поперечная сила и изгибающий момент. Частным случаем прямого поперечного изгиба является чистый изгиб , при таком сопротивлении имеются грузовые участки, в пределах которых поперечное усилие обращается в ноль, а изгибающий момент отличен от нуля. В поперечных сечениях стержней при прямом поперечном изгибе возникают нормальные и касательные напряжения. Напряжения являются функцией от внутреннего усилия, в данном случае нормальные – функцией от изгибающего момента, а касательные - от поперечной силы. При прямом поперечном изгибе вводятся несколько гипотез:

1) Поперечные сечения балки, плоские до деформации, остаются плоскими и ортогональными к нейтральному слою после деформации (гипотеза плоских сечений или гипотеза Я. Бернулли). Эта гипотеза выполняется при чистом изгибе и нарушается при возникновении поперечной силы, касательных напряжений, и появлением угловой деформации.

2) Взаимное давление между продольными слоями отсутствует (гипотеза о ненадавливании волокон). Из этой гипотезы следует, что продольные волокна испытывают одноосное растяжение или сжатие, следовательно, при чистом изгибе справедлив закон Гука .

Стержень, испытывающий изгиб, называют балкой . При изгибе одна часть волокон растягивается, другая часть – сжимается. Слой волокон, находящийся между растянутыми и сжатыми волокнами, называют нейтральным слоем , он проходит через центр тяжести сечений. Линию пересечения его с поперечным сечением балки называют нейтральной осью . На основе введенных гипотез при чистом изгибе получена формула для определения нормальных напряжений, которая применяется и при прямом поперечном изгибе. Нормальное напряжение можно найти с помощью линейной зависимости (1), в которой отношение изгибающего момента к осевому моменту инерции (
) в конкретном сечении является величиной постоянной, а расстояние (y ) вдоль оси ординат от центра тяжести сечения до точки, в которой определяют напряжение, меняется от 0 до
.

. (1)

Для определения касательного напряжения при изгибе в 1856г. русским инженером – строителем мостов Д.И. Журавским была получена зависимость

. (2)

Касательное напряжение в конкретном сечении не зависит от отношения поперечной силы к осевому моменту инерции (
), т.к. эта величина в пределах одного сечения не меняется, а зависит от отношения статического момента площади отсеченной части к ширине сечения на уровне отсеченной части (
).

При прямом поперечном изгибе возникают перемещения: прогибы (v ) и углы поворотов (Θ ) . Для их определения используют уравнения метода начальных параметров (3), которые получены путем интегрирования дифференциального уравнения изогнутой оси балки (
).

Здесь v 0 , Θ 0 , М 0 , Q 0 – начальные параметры, x расстояние от начала координат до сечения, в котором определяется перемещение, a – расстояние от начала координат до места приложения или начала действия нагрузки.

Расчет на прочность и жесткость производят с помощью условий прочности и жесткости. С помощью этих условий можно решать поверочные задачи (выполнять проверку выполнения условия), определять размер поперечного сечения или подбирать допустимое значение параметра нагрузки. Условий прочности различают несколько, некоторые из них приведены ниже. Условие прочности по нормальным напряжениям имеет вид:

, (4)

здесь
момент сопротивления сечения относительно оси z, R – расчетное сопротивление по нормальным напряжениям.

Условие прочности по касательным напряжениям выглядит как:

, (5)

здесь обозначения те же, что и в формуле Журавского, а R s – расчетное сопротивление срезу или расчетное сопротивление по касательным напряжениям.

Условие прочности по третьей гипотезе прочности или гипотезе наибольших касательных напряжений можно записать в следующем виде:

. (6)

Условия жесткости можно записать для прогибов (v ) и углов поворота (Θ ) :

где значения перемещений в квадратных скобках являются допустимыми.

Пример выполнения индивидуального задания № 4 (срок 2-8 неделя)

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Чистым изгибом называется такой вид изгиба, при котором имеет место действие только изгибающего момента (рис. 3.5, а). Мысленно проведем плоскость сечения I-I перпендикулярно продольной оси балки на расстоянии * от свободного конца балки, к которому приложен внешний момент m z . Осуществим действия, аналогичные тем, которые были выполнены нами при определении напряжений и деформаций при кручении, а именно:

  • 1) составим уравнения равновесия мысленно отсеченной части детали;
  • 2) определим деформацию материала детали исходя из условий совместности деформаций элементарных объемов данного сечения;
  • 3) решим уравнения равновесия и совместности деформаций.

Из условия равновесия отсеченного участка балки (рис. 3.5, б)

получим, что момент внутренних сил M z равен моменту внешних сил т: М = т.

Рис. 3.5.

Момент внутренних сил создается нормальными напряжениями o v , направленными вдоль оси х. При чистом изгибе нет внешних сил, поэтому сумма проекций внутренних сил на любую координатную ось равна нулю. На этом основании запишем условия равновесия в виде равенств

где А - площадь поперечного сечения балки (стержня).

При чистом изгибе внешние силы F x , F, F v а также моменты внешних сил т х, т у равны нулю. Поэтому остальные уравнения равновесия тождественно равны нулю.

Из условия равновесия при о^О следует, что

нормальные напряжение с х в поперечном сечении принимают как положительные, так и отрицательные значения. (Опыт показывает, что при изгибе материал нижней стороны бруса на рис. 3.5, а растянут, а верхней - сжат.) Следовательно, в поперечном сечении при изгибе есть такие элементарные объемы (переходного слоя от сжатия к растяжению), в которых удлинение или сжатие отсутствует. Это - нейтральный слой. Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной линией.

Условия совместности деформаций элементарных объемов при изгибе формируется на основе гипотезы плоских сечений: плоские до изгиба поперечные сечения балки (см. рис. 3.5, б) останутся плоскими и после изгиба (рис. 3.6).

В результате действия внешнего момента брус изгибается, а плоскости сечений I-I и II-II поворачиваются друг относительно друга на угол dy (рис. 3.6, б). При чистом изгибе деформация всех сечений вдоль оси балки одинакова, поэтому радиус р к кривизны нейтрального слоя балки вдоль оси х один и тот же. Так как dx = р K dip, то кривизна нейтрального слоя равна 1 / р к = dip / dx и постоянна по длине балки.

Нейтральный слой не деформируется, его длина до и после деформации равна dx. Ниже этого слоя материал растянут, выше - сжат.


Рис. 3.6.

Значение удлинения растянутого слоя, находящегося на расстоянии у от нейтрального, равно ydq. Относительное удлинение этого слоя:

Таким образом, в принятой модели получено линейное распределение деформаций в зависимости от расстояния данного элементарного объема до нейтрального слоя, т.е. по высоте сечения балки. Полагая, что нет взаимного надавливания параллельных слоев материала друг на друга (о у = 0, а, = 0), запишем закон Гука для линейного растяжения:

Согласно (3.13) нормальные напряжения в поперечном сечении балки распределены по линейному закону. Напряжение элементарного объема материала, наиболее удаленного от нейтрального слоя (рис. 3.6, в ), максимально и равно

? Задача 3.6

Определить предел упругости стального клинка толщиной / = 4 мм и длиной / = 80 см, если его изгиб в полуокружность не вызывает остаточной деформации.

Решение

Напряжение при изгибе o v = Еу / р к. Примем y max = t / 2и р к = / / к.

Предел упругости должен соответствовать условию с уп > c v = 1 / 2 кЕ t /1.

Ответ: о = ] / 2 к 2 10 11 4 10 _3 / 0,8 = 1570 МПа; предел текучести этой стали а т > 1800 МПа, что превышает а т самых прочных пружинных сталей. ?

? Задача 3 .7

Определить минимальный радиус барабана для намотки ленты толщиной / = 0,1 мм нагревательного элемента из никелевого сплава, при котором материал ленты пластически не деформируется. Модуль Е= 1,6 10 5 МПа, предел упругости о уп = 200 МПа.

Ответ: минимальный радиус р = V 2 ?ir/a yM = У? 1,6-10 11 0,1 10 -3 / (200 10 6) = = 0,04 м. ?

1. При совместном решении первого уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Значение Е / р к ф 0 и одинаково для всех элементов dA площади интегрирования. Следовательно, данное равенство удовлетворяется только при условии

Этот интеграл называют статическим моментом площади поперечного сечения относительно оси z? Каков физический смысл этого интеграла?

Возьмем пластинку постоянной толщины /, но произвольного профиля (рис. 3.7). Подвесим эту пластинку в точке С так, чтобы она находилась в горизонтальном положении. Обозначим символом у м удельный вес материала пластинки, тогда вес элементарного объема площадью dA равен dq = уJdA. Так как пластинка находится в состоянии равновесия, то из равенства нулю проекций сил на ось у получим

где G = у M tA - вес пластинки.


Рис. 3.7.

Сумма моментов сил всех сил относительно оси z , проходящей в любом сечении пластинки, также равна нулю:

Учитывая, что Y c = G, запишем

Таким образом, если интеграл вида J xdA по площади А равен

нулю, то х с = 0. Это означает, что точка С совпадает с центром тяжести пластинки. Следовательно, из равенства S z = J ydA = 0 при из-

гибе следует, что центр тяжести поперечного сечения балки находится на нейтральной линии.

Следовательно, значение у с поперечного сечения балки равно нулю.

  • 1. Нейтральная линия при изгибе проходит через центр тяжести поперечного сечения балки.
  • 2. Центр тяжести поперечного сечения является центром приведения моментов внешних и внутренних сил.

Задача 3.8

Задача 3.9

2. При совместном решении второго уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Интеграл J z = J y 2 dA называется моментом инерции поперечного

сечения балки (стержня) относительно оси z, проходящей через центр тяжести поперечного сечения.

Таким образом, M z = Е J z / р к. Учитывая, что с х = Ее х = Еу / р к и Е / р к = а х / у, получим зависимость нормальных напряжений о х при изгибе:

1. Напряжение изгиба в данной точке сечения не зависит от модуля нормальной упругости Е, но зависит от геометрического параметра поперечного сечения J z и расстояния у от данной точки до центра тяжести поперечного сечения.

2. Максимальное напряжение при изгибе имеет место в элементарных объемах, наиболее удаленных от нейтральной линии (см. рис. 3.6, в):

где W z - момент сопротивления поперечного сечения относительно оси Z-

Условие прочности при чистом изгибе аналогично условию прочности при линейном растяжении:

где [а м | - допускаемое напряжение при изгибе.

Очевидно, что внутренние объемы материала, особенно вблизи нейтральной оси, практически не нагружены (см. рис. 3.6, в). Это противоречит требованию минимизировать материалоемкость конструкции. Ниже будут показаны некоторые способы преодоления данного противоречия.